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Abstract—Understanding of the Internet evolution is important 
for many research topics, such as network planning, optimal 
routing design, etc. In this paper, we try to analyze CAIDA 
AS-level topology dataset from 2004 to 2010 to validate two 
conjectures on the Internet evolution, i.e., the Internet flattening 
trend and the preferential attachment rule. Our analysis shows 
that the evolvement of the Internet core is different from the edge 
of Internet. We classify the Internet into several layers using 
different layering methods, i.e., Rich Club coefficient based 
method, k-core decomposition method and SARK hierarchy 
model, and then study the changes of the features of these layers. 
Under all of these laying methods, we find that the boundaries 
between neighboring layers in the Internet core are more and 
more blurred; ASes in the core distribute more evenly and 
different layers are closer to each other in size, while the Internet 
edge still has a distinct hierarchical characteristic. It is more 
evident in Asia and Europe than North America. The other 
difference between Internet core and Internet edge is that link 
births/deaths in the Internet core follow the "Preferential 
Attachment/de-attachment" rule, while link births/deaths in the 
Internet edge follow a super linear preferential 
attachment/de-attachement rule. On the other hand, in both 
Internet core and Internet edge, link births caused by AS births 
present stronger preference than link rewiring. 

Keywords- topology evolution; flattening; preferential 
attachment 

I. INTRODUCTION

The Internet as a network of networks consisting of 
thousands of ASes (Autonomous Systems), experiences AS 
births, AS deaths and changes of connectivity between ASes. It 
is an evolving entity with constituent network components 
being constantly added, upgraded and engineered [1]. The 
dynamics and evolution of the Internet is the optimization 
result of individual ASes. Understanding evolution of the 
Internet is necessary and meaningful. It provides a perception 
of the Internet topology which is important for network 
planning, routing protocol design, topology generation for 
simulations and new generation Internet architecture design.  

Though an extensive literature has focused on this topic in 
recent years, there are still problems in many aspects of the 
Internet evolution. In this paper, we focus on two conjectures:
the Internet flattening trend and the preferential attachment 
rule.

Traditionally, the Internet is viewed as a hierarchical 
network. We can split the Internet into several layers according 
to certain metrics since there are considerably significant 
boundaries between different layers. It is conventional wisdom 
that 10-15 ASes peer with each other forming a clique and 

occupy the highest layer in the core (or say Tier-1). Some more 
ISPs (Tier-2), such as national ISPs, large regional ISPs and 
large content providers, buy transit service from tier-1 ISPs 
while providing transit service to lots of small regional ISPs 
and small corporations in the edge of Internet (Tier-3). Besides, 
the hierarchical Internet is a Pyramid structure considering the 
size of each layer: the upper the layer is, the less ASes it 
contains. The edge of the Internet contains the majority of 
ASes. Many researches are based on the assumption that the 
Internet is typically hierarchical and the hierarchical property is 
one of the important metric to evaluate the network model [2].

However, recent 10 years witnessed enormous changes of 
the Internet structure. The rapid expansion of CP or CDNs and 
the appearance of IXP have reduced peering cost sharply in the 
past few years. Besides, multihoming and some complex 
relationships such as partial transit have become more common. 
Against this background, more and more evidences, both 
anecdotal and academic, show that the Internet is heading 
towards a flattening structure. First, the flattening has drawn 
attention of operator groups such as NANOG. In addition, 
more and more ISPs have declared that they have occupied the 
center of the Internet ecosystem, gained significant power in 
the Internet and the ability to offer more reliable and cheaper 
transit services; Second, some researches and measurements 
have directly noticed the flattening trends and they described 
this trend from different point of view, e.g. considering the 
change of traffic volume and the decrease of AS level route 
length.  

Traffic migration and the shortening average AS path 
length are signals of flattening of the Internet. However, they 
have limits on describing the change of the Internet structure. 
Furthermore, we also need to study the evolution trend in the 
Internet core and edge separately. In this paper, we try to study 
this trend from the layer viewpoint, which is the core concept 
of the Internet hierarchy model, and demonstrate the flattening 
phenomenon occurring in the Internet from the following 
aspects: boundaries between neighboring layers are blurred; 
with better AS connectivity, ASes are distributed in different 
layers more evenly and layers are closer to each other in size. 
Under the same hierarchy model, flattening is manifested by 
the blurred boundaries between neighboring layers and the 
increasing AS proportion of the higher layers which implies the 
Internet is evolving from a pyramid structure to a better 
connected or even full-meshed structure. 

We use three layering methods, i.e. rich club coefficient 
based method, k-core decomposition method and SARK 
hierarchy model, and study Internet topology evolution during 
the last 7 years. We study the changes of features of different 



layers and find that the boundaries between neighboring layers 
in the Internet core are more blurred over time; ASes in the 
core distribute more evenly and different layers are closer to 
each other in size, while the Internet edge still has a distinct 
hierarchical characteristic. It conveys the message that 
flattening is indeed taking place in the Internet core. We also 
find this trend is more evident in Asia and Europe than North 
America. This trend has significant impact on the design of a 
more robust routing architecture. This finding is also quite 
meaningful for ISPs` network planning. 

In addition to observing the Internet evolution from the 
view of the whole Internet, we also study the evolution of each 
AS individually (node level). This is related closely to the 
researches of topology generation models. Preferential 
attachment of nodes to nodes with high degrees is coined in 
famous BA model, and many follow-up researches are based 
on the preferential attachment rule. However, there are always 
doubts whether the preferential attachment rule is still 
reasonable today, and whether it should be linear preference or 
super linear preference [6]. The common method adopted by 
modeling work is to compare the modeling result with just one 
snapshot on some static topological properties. However, 
examining the evolution of topology over time is a more direct 
and convincing way. Chen et al. [7] validated this rule in 2002 
and stated the preferential attachment was super linear. But in 
the following nearly ten years, few works could give a 
convinced result based on real measurement. Researchers do 
not know whether this rule is still validated today. 

Based on real measurement data, ranging from 2004 to 
2010, a total of 73 monthly snapshots, we study the properties 
of AS/link births/deaths and preferential attachment rule at 
node level. We find link births in the Internet core follow the 
linear preferential attachment rule, while in the edge of the 
Internet, we observe evident super linear preferential 
attachment property on link births. Moreover, link births 
caused by AS births present stronger preference than link 
rewiring. Furthermore, we verify that the de-preferential 
attachment rule indeed exists and link deaths share lots of 
common properties with link births. 

The rest of the paper is organized as follows. In Section ,
we discuss related work. In Section , we present definitions 
and our data preparation method. In Section , we analyze 
the flattening trend in recent years. And then in Section , we 
study the evolution at node level and analyze the preferential 
attachment and preferential de-attachment rules. Finally, in 
section  we conclude our work. 

II. RELATED WORK

In the last decade, a number of studies characterized 
AS-level topology of the Internet. Based on measurement 
results, some studies show that the Internet share lots of 
properties with other complex networks, such as “randomness”, 
“scale free”, “small world”, however, other studies highlight 
that the Internet has its typical properties and hierarchy is an 
important one [8,9]. Considering the hierarchical property, 
several works classify the ASes into different tiers or layers. 
Some of them [10, 11] are based on the topological structure, 
such as node degree, while other layering methods take the 

relationships between ASes into consideration. Ge et al. 
classify ASes into seven layers based on inferred 
customer-to-provider relationships [12]. X. Dimitropoulos et al. 
map all ASes into 7 levels using machine learning techniques 
based on metrics such as the number of inferred customers, 
IRR description, etc [13]. Subramanian et al. classify ASes into 
five layers based on inferred customer-to-provider as well as 
peer-to-peer relationships [2]. 

More and more recent studies examine the topology 
evolution of the Internet over time. Many literatures analyze 
real measurement data and try to find Internet evolution trend 
or rules. Magoni et al. find exponential growth in the number 
of ASes and links from 1997-2000. Leskovec et al. [14] 
measure the average degree and effective diameter of the 
Internet AS graph and conclude that the AS graph is getting 
denser. Dhamdhere et al. [15] measure the topology in the last 
decade and highlight a slower exponential growth of the 
Internet in terms of both ASes and inter-AS links which is 
mostly due to enterprise networks and content/access providers 
at the periphery of the Internet and find the average AS path 
length of the growing Internet remains almost constant mostly 
due to the increasing multihoming degree of transit and 
content/access providers. 

As aforementioned, the Internet flattening trend has been 
noticed by researchers. C. Labovitz et al. [3] find the migration 
of a majority of Internet traffic away from Tier-1 to the direct 
links between large CP and customer networks. Considering 
the traffic migration is mainly caused by video traffic between 
the two video service giants, Google and Comcast, it was not 
enough for us to draw the flattening conclusion solely based on 
this traffic migration. Several researches study this trend from 
AS path length. Through monitoring and analyzing the 
inter-domain routing from BGP routing tables, Routeviews and 
RIPE RIS, Y Xiang et al. [5] find ASes close to Tier 1 
contribute 36% to the decrease in route length and content 
providers contribute a lot to the flattening. Taking both traffic 
and route length into consideration, based on Traceroute 
method, Gill et al. show that CP brought their networks to 
users, bypassing Tier-1 ISPs on many paths which might 
flatten the Internet topology [4].  

However, these observations and analysis based on routing 
path length or traffic volume could not depict the evolution of a 
hierarchical network sufficiently. Dhamdhere et al. studies this 
evolutionary transition with an agent-based network formation 
model which predicts several substantial differences between 
the Hierarchical Internet and the Flat Internet in terms of 
profitability, path lengths, etc [16]. 

There are also researches trying to validate some rules 
based on the change of topology at node level over time. After 
it is proposed in the BA model, preferential attachment rule has 
been used as a basic assumption in many modeling works, e.g. 
AB [17], GLP [18] with minor modifications. However, the 
linear preferential attachment mechanism is always doubted. 
From the view of modeling, Zhou et al. propose new variants 
of BA model with super linear preferential attachment 
mechanism [6] and show the better generative topology result 
on some static properties. There are also researches validate the 
rule based on the dynamic Internet instances: Siganos et al. [19] 



observe the Internet evolution during 1997-2001 at different 
levels and find the link super-linear preferential attachment rule; 
Chen et al. validate BA model in 2002 and also find the 
Internet is indeed growing incrementally and new ASes have a 
much stronger preference to connect to high vertex degree 
ASes than predicted by the linear preferential model [7]. But in 
the following nearly ten years, few works could give a 
convinced result based on real measurement data. 

III. DATASETS AND METHODOLOGY

A. Data Source 
To study the evolution of the global Internet, both historical 

topological structure of the Internet and the contractual 
relationships between them are needed. However, ISPs are not 
willing to release data makes our study difficult. Fortunately, 
CAIDA publishes measurement and inference data of the 
Internet AS-level topology [20]. 

Researchers in CAIDA collect BGP routing tables from 
Routeviews, which provides historical routing information; 
then, after filtering backup and transient links, they infer AS 
relationships (customer-to-provider and peer-to-peer) using 
their MAX2SAT techniques [21] based on multi-objective 
optimization and infer sibling relationship using WHOIS 
information [22]. The main idea behind inference heuristics of 
c-p and p-p link is an optimally balanced trade-off between AS 
relationship information that can be extracted from AS degrees 
and maximization of the number of valid paths in the resulting 
annotated AS topology [23]. The accuracy of this data set has 
been validated by several works [23, 24, 25].�

The CAIDA data set contains the Internet topology 
annotated with relationship from January 2004 to January 2010, 
with one snapshot per week. Considering one snapshot for each 
month is enough for our analysis on the Internet evolvement, 
we do the following to generate snapshots in our dataset to 
further avoid false path introduced by misconfiguration. We 
compare all the CAIDA snapshots in the same month and 
consider a link to be valid if it appears in the majority of 
snapshots in this month. Then, we generate a merged monthly 
snapshot comprising of all the valid links to represent topology 
in this month. For convenience, in the following analysis, we 
use number i (i = 1…73) to mark these 73 snapshots and 
represent the time in the six years.  

B. Layering Methods 
We want to study how the Internet hierarchical structure 

changed based on the concept of layer. There are several 
methods to split the Internet into layers. The layering results 
should be consistent with intuitivelyon, i.e. customer ISP 
should be in the lower layer than its providers. To avoid the 
inaccuracy or error of one certain layering method, we apply 
three different well-tested layering methods to our dataset. In 
this section, we will introduce these three layering methods 
briefly, i.e., Rich Club connectivity (RCC) based method, 
k-core decomposition method and SARK hierarchy model.

Layering method based on RCC: The rich-club is an 
important concept in Internet topology modeling. The rich-club 
phenomenon introduced by [10] refers to that the rich nodes, 
which are a small number of nodes with large number of links, 

are very well connected to each other. Based on this 
phenomenon, we can split the Internet into two parts: rich club 
and other nodes. The rich-club is the center of the Internet core. 
There is an evident boundary between nodes in the rich club 
and other nodes concerning their rich club coefficient, which is 
defined as the ratio of the total actual number of links between 
members of the rich-club to the maximum possible number of 
links. The maximum possible number of links between n nodes 
is n*(n-1)/2. In each snapshot, we sort nodes in a decreasing 
order according to their degrees and calculate rich-club 
coefficient C(r) of each AS where rank r denotes the node 
position in the decreasing list. Our first layering method 
defines the rich club layer as nodes with rank less than rmax,
where rmax equals to 0.2%.

K-core decomposition method: The k-cores are fundamental 
structures in graph theory and their study dated back to the 60’s 
[26]. The k-core of a graph is the sub graph obtained by the 
iterative removal of all nodes with degree less than or equal to 
k. The node coreness k of a given node is the maximum k such 
that the certain node is present in the k-core but removed in the 
(k + 1)-core. The maximum node coreness k-max in a graph is 
the graph coreness. Compared with degree, “coreness”, as one 
of network topology characteristics for node, has better ability 
to describe the hierarchy of network. It provides the depth 
information of a node in the graph.  

During the decomposition process, we can classify the nodes 
with the same coreness into the same layer, denoted as 
coreness layer Lk-coreness. The high coreness layers, or say the 
inner layers, are viewed as the Internet core and the outside 
layers are the Internet edge. We use coreness of 5 to divide the 
core and the edge of the Internet based on our observation. 

SARK Hierarchy model: The former two methods view the 
Internet as an undirected graph and split the graph using 
graph-theoretic metrics. In fact, taking the relationships 
between ASes into consideration is a better way to catch the 
essence of tiers in the hierarchy. We adopt the method 
introduced by [2]. It divides the Internet into five layers: 
customers, small regional ISPs, outer core, transit core and 
dense core, based on AS relationships and node connectivity 
boundaries. 

In this model, Internet is abstracted as directed graph, a 
provider-customer relationship between A and B is represented 
by a directed edge from A to B and a peering relationship 
between A and B is represented by two directed edges. The 
leaves of this directed graph are classified as customers; the 
nodes removed by the process of iterative pruning the leaves of 
the graph are defined as small regional ISPs. The remaining set 
of ASes is regarded as the Internet core. They use a greedy 
heuristic method to further identify the dense core. They define 
the sub graph to be “almost a clique” if every node in it has the 
out-degree and in-degree of at least N / 2. Then they use an 
in-way cut method to find the transit core, considering the 
jump of out degree to the transit core and dense core as the 
layering boundary. The transit core consists of other large 
national ISPs and hosting companies that have peering 
relationships with each other and with some ASes in the dense 
core but do not tend to peer with other ASes in the outer core 

This work is supported by the National Basic Research Program of China 
under Grant No. 2009CB320505, the National Science and Technology 
Supporting Plan of China under Grant No. 2008BAH37B05, and the National 
High-Tech Research and Development Plan of China under Grant No. 
2008AA01A303 and 2009AA01Z251. 
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Figure 11. Link death preferential de-attachment 

VI. CONCLUSION

In this paper, we analyze the Internet topology snapshots 
over the last 7 years to study the evolution trend. We focused 
on two conjectures on the Internet evolution, i.e., the Internet 
flattening trend and the preferential attachment. Particularly, 
we study the evolution in the core and the edge of the Internet 
separately and find the core and the edge present different 
evolution features. 

Our work is based on the concept of layer. We use three 
different well-tested layering methods, i.e. Rich Club 
coefficient based method, k-core decomposition method and 
SARK layering model, to validate the flattening trend. We see 
the same conclusion under all three layering methods: in the 
core of the Internet, the boundaries of different layers are 
blurred; ASes distribute more evenly and different layers are 
closer to each other in size. It means the hierarchical 
characteristic of the Internet core is becoming weaker. And 
this flattening trend is more evident in Asia and Europe than 
North America. However, in the edge of the Internet, there is 
no obvious flattening evidence. 

Our analysis on the Internet evolution at node level 
validates the preferential attachment assumption. The link 
births still follow the preferential attachment rule. To be more 
specific, there is evident super linear preferential attachment 
property on link births in the Internet edge, and link births 
caused by AS births present stronger preference than link 
rewiring. Moreover, the preferential de-attachment rule indeed 
exists and link deaths share lots of common properties with 
link births. 
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