
A Survey on Resource Scheduling for Data Transfers in Inter-Datacenter WANs

Jessie Hui Wanga,b, Jilong Wanga,b, Changqing Ana,b, Qianli Zhanga,b

aInstitute for Network Sciences and Cyberspace, Tsinghua University, China
bBeijing National Research Center for Information Science and Technology, China

Abstract

Today, datacenter providers spend a lot of money on inter-datacenter WANs to transmit traffic flows between geograph-
ically distributed datacenter sites. It is very important for datacenter providers to design resource scheduling schemes
to schedule inter-datacenter networking resources to satisfy data transfer requests and achieve maximum performance or
economic benefits. In this article, we conduct a review study on research efforts being conducted on the inter-datacenter
networking resource scheduling problem. Our survey study is presented in three parts. The first part focuses on for-
mulating the problem theoretically, including the definition and features of a data transfer, network models of inter-DC
WANs, scheduling objectives, and scheduling dimensions. We also summarize a conceptual implementation architecture
of scheduling systems. Second, we classify existing schemes according to their objectives and scheduling dimensions and
then explain how they formulate and solve their own problems. In the third part, we examine practical challenges in
developing scheduling systems and also point out some future directions. Since we do not see any survey focusing on the
scheduling problem of inter-DC WANs, we believe this article can provide some help for research developments in this
important field by organizing logically the recent research efforts from industry and academia.

Keywords: Inter-DC WAN, Scheduling, Resource Allocation, Traffic Engineering, Datacenter

1. Introduction

In recent years, many Internet Content Providers (ICPs),
Internet Service Providers (ISPs) and other corporations
deploy large-scale datacenters at multiple geographical lo-
cations for scalability, robustness or performance (e.g., la-
tency) considerations. Each of them needs to build its
Inter-DC WAN to connect its multiple datacenter sites,
and measurement study shows that the inter-datacenter
traffic has been growing at a very fast rate. For example,
Google’s WAN is delivering terabits/sec of traffic across
the earth. It is reported that the total cost of the inter-
DC WAN even exceeds the cost of networking within a
datacenter site and becomes one of the major components
of the cost for datacenters [1].

However, datacenter providers are unable to fully lever-
age this investment with only traditional Internet tech-
nologies. Traditionally, in the Internet, WAN links are of-
ten provisioned at 30− 40% on average to protect against
traffic bursts, failures and packet loss. Such low utiliza-
tion is unacceptable for inter-DC WAN links because low
utilization and huge traffic volume would make WANs pro-
hibitively expensive.

There are at least two reasons for the poor efficiency of
traditional WANs. First, traditional WANs always treat
all bits the same. As a result, WAN links have to be

∗Corresponding author
Email address: jessiewang@tsinghua.edu.cn (Jessie Hui

Wang)

over-provisioned to mask link or router congestions and
failures from the traffic of sensitive applications. If we are
capable to offer satisfactory performance (e.g., low latency,
enough bandwidth) for performance-sensitive applications
even when the WAN is congested, we can avoid the ne-
cessity of over-provisioning. Second, traditional resource
allocations are usually implemented in a distributed man-
ner wherein no one has a global view and each node in-
dependently manages its own resources, so that the global
optimal allocation cannot be reached.

Considering the above two culprits for low efficiency, in
order to achieve high efficiency, datacenter providers may
want to treat traffic flows of various applications differently
according to the applications’ own requirements, and the
resource allocation should be done in a centralized manner
with a global view. For example, intuitively, we can have
a central controller which collects deadline requirements of
all flows, then some flows without deadline requirements
can be postponed to make room for latency-sensitive flows
when networking resources are not sufficient. In this way,
we do not need to increase provisioning to satisfy the re-
quirements of latency-sensitive flows, and the operation
cost of the datacenter provider is reduced.

In fact, the idea of treating traffic flows of applica-
tions differently had ever been proposed to improve the
efficiency of the Internet. For example, decades ago, re-
searchers proposed Intserv and Diffserv mechanisms to im-
prove efficiency by setting different priorities for different
traffic classes in the Internet.But they have never been de-

Preprint submitted to Elsevier June 18, 2019



ployed at large scale, mainly due to scalability and man-
agement issues.

Fortunately, inter-DC WANs exhibit a number of unique
characteristics which are different from the Internet, and
these properties enable us to improve the efficiency of
inter-DC WANs by designing proper scheduling schemes.
First, one inter-DC WAN is always operated by a single
operator, so the complete view of the WAN is available.
For private datacenters such as Google, it can even be able
to control the sending rates of applications and end hosts.
By controlling more factors, inter-DC scheduling schemes
can extract more values. Second, generally one inter-DC
WAN has about a few dozens of sites, which is far smaller
than the Internet, and it makes centralized optimization
computationally tractable. Third, there are a lot of elastic
traffic demands that offer great flexibility for scheduling.
For example, data backup among sites, which is one ma-
jor source of inter-DC traffic demand, only requires to be
completed before a loose deadline, therefore we can allo-
cate it less resource when the WAN is heavy-loaded and
compensate it later. Due to these reasons, it is feasible
and valuable to optimize the scheduling of data transfers
in inter-DC WANs using a centralized mechanism and en-
abling a reliable global view of network and user status
that facilitates coordination among transfers.

1.1. Problem Definition and Motivation

As we described above, it is valuable and feasible to
develop innovative scheduling schemes that can schedule
inter-DC networking resources for data transfers to exploit
inter-DC WANs efficiently instead of dumb over-provisioning.
However, although the basic idea to improve efficiency is
simple, how to design schemes and implement them still
faces significant technical challenges and deserves signifi-
cant attention from both academia and industry.

First, inter-DC data transfers may have various sizes,
deadlines and performance requirements. We have to un-
derstand them well to model, categorize, and aggregate
them for scheduling. Second, the availability and cost
of networking resources can be very different for differ-
ent datacenter providers. For example, if a datacenter
provider deploys a dedicated inter-DC WAN, its network-
ing resource and cost would be fixed, and thus it would like
to provide service for as many as possible of data trans-
fers; if the datacenter provider is buying its networking
resources from ISPs under a usage-based charging model,
the amount of its networking resources can be adaptive to
the intensity of data transfers, but it has to consider the
cost and revenue of providing service for a data transfer
and may reject transfers with negative profit. Third, dat-
acenter providers may have various scheduling objectives,
such as priority or fairness among transfers, maximum rev-
enue or social welfare. Fourth, the ability of datacenter
providers to control the provision and usage of inter-DC
WANs varies greatly. One datacenter provider might be
able to control one or more of the following things: rout-
ing of data packets, sending rate of each flow, provisioned

bandwidth, charges to users, WAN topology, etc. We refer
to them as scheduling dimensions or decision variables of
the datacenter provider.

Generally speaking, the resource scheduling problem of
inter-DC WANs is defined as follows:

Given: (a) a set of data transfer requests D, (b) a net-
working model which includes a fixed or variable amount
of networking resources R with a cost of C(R), (c) a set of
scheduling dimensions S, and (d) a set of given objectives
U ,

Question: the resource scheduling problem of inter-
DC WANs is to determine “optimal” values for all schedul-
ing dimensions, such that the given objectives are maxi-
mized under the constraints of networking resources.

Here, one scheduling dimension Ri can be a variable
or a vector of variables of the network model, such as the
bandwidth or sale price of each link; it can also be a vari-
able or a vector of variables that represents a decision made
for every transfer, such as a vector of routing paths or send-
ing rates. D, R, C(R), S and U can be very different in
different inter-DC WANs. We will describe them in detail
in Section 2.

While there has been a wide body of research pub-
lished in prestigious journals and conferences (e.g., Sig-
comm 2011, Sigcomm 2013-2016, Sigcomm 2018) in recent
years, we have not seen any survey articles focusing on
the resource scheduling of inter-DC WANs. We are there-
fore motivated to survey the latest papers in this area and
provide a starting ground for interested readers. In this
article, we will conduct a review study on recent research
efforts from datacenter operators (e.g., Google, Microsoft),
ISPs (e.g., Telefonica), and universities. We believe it can
provide some help for research developments in this impor-
tant field by organizing logically the recent research efforts
from industry and academia.

1.2. Related Research Directions and Surveys

A datacenter is a set of servers connected by networking
devices such as routers or switches. Traditionally, datacen-
ters run applications on these dedicated physical servers
directly. After the emergence of server virtualization tech-
nologies, most datacenters are virtualized to provide elas-
tic virtual computing, storage and networking resources
for various applications, such as cloud computing.

As cloud computing is more and more widely used, the
research on datacenter and cloud computing draws a lot
of attention, and there have been a lot of surveys focus-
ing on various issues of datacenters, such as infrastructure
architecture and routing of datacenter networking (DCN)
[2] [3] [4] [5] [6] [7] [8], virtualization technologies [9][10],
energy consumption [11][12][13], and SDN for DCN [14]
[15].

Among various issues, resource management and schedul-
ing is regarded as one of the key future directions for cloud
computing research [16]. The authors of [17] outline a
conceptual framework for cloud resource management and

2



structure related works according to the framework. The
article [18] conducts a survey on resource orchestration
in terms of concepts, paradigms, languages, models, and
tools. There have also been some survey articles on re-
source scheduling algorithms, but these articles are work-
ing on task/workload scheduling and flow scheduling, and
none of them focus on the resource scheduling of inter-
datacenter WANs.

Cloud task/workload scheduling. In [19], resource
scheduling is defined as “mapping of workloads with ap-
propriate resources”. In clouds, cloud applications are run
by cloud tenants (or SaaS cloud providers) who apply for
virtual cloud resources to satisfy their end users. Conven-
tionally, these requests from end users are referred to as
workloads or tasks. The objective of workload scheduling
algorithm is to solve these questions: 1) schedule each task
onto a suitable virtual node; 2) place each virtual node
on an appropriate physical node and provision it with an
appropriate amount of physical resources, i.e., VM place-
ment/consolidation/migration.

In [19], Singh and Chana present a thorough survey
on the workload scheduling problem, and they analyze
thirteen types of resource scheduling algorithms and eight
types of resource distribution policies. The authors of [20]
present a taxonomic survey on the algorithms to balance
workloads across datacenter resources by assigning work-
loads to light-loaded nodes or allocating more physical re-
sources to overloaded VMs. The article [21] also reviews
load balancing techniques and implementations in cloud
computing. The algorithms to determine the mapping be-
tween virtual machines and physical machines are surveyed
in [10] and [22]. The fairness issue in resource allocation
mechanisms is discussed in [23]. Some survey articles focus
on a single one particular type of algorithms or approaches
for the scheduling of cloud resources. For example, in [24],
the authors only focus on evolutionary computation algo-
rithms, such as GA, ACO, and PSO. In [25], the authors
review the applications of economic and pricing models
to develop adaptive algorithms and protocols for resource
scheduling.

The workload scheduling problem mainly focuses on
computing, storage and energy resources. Although some
algorithms are network-aware, they do not consider the
allocation of networking resources. In [20], the authors
point out the effective utilization of networking resources
is a significant research direction and that the problem has
not been properly addressed.

Flow scheduling in DCN. The allocation and schedul-
ing of networking resources has also been discussed in
several survey articles, but they mainly focus on intra-
datacenter scenarios, which are different from our survey.

End-to-end traffic control via transport control proto-
cols is surveyed in [26]. The authors of [27] also present
a tutorial on various datacenter traffic control solutions,
such as transmission control, traffic shaping, prioritiza-
tion, and multi-pathing. The authors of [28] present a
survey of solutions for traffic load balancing in data cen-

ter networks. The article [22] also reviews research efforts
in intra-datacenter traffic engineering and end-to-end flow
control via transport protocols. Most of these algorithms
are designed based on the special data center topologies
and traffic characteristics.

Data processing frameworks such as MapReduce and
Hadoop are popular applications running in cloud net-
works. These data-parallel applications generate collec-
tions of semantic-related flows (defined as coflow) between
multi-stages, and the transmission of these coflows has a
significant influence on their job-level performance. In [29]
and [30], the authors conduct surveys on coflow scheduling
algorithms which are to optimize the transmission of data
flows generated by those frameworks.

Although inter-datacenter communication is regarded
as an evolving research area that requires further atten-
tion [27], the articles mentioned above either focus only
on intra-datacenter traffic control or just mention resource
scheduling in inter-datacenter networks very briefly. Our
article presents a complete and detailed survey on inter-
datacenter resource scheduling.

1.3. Organization
We base our discussion on an overall classification of

surveyed schemes according to their scheduling dimensions
and scheduling objectives. As shown in Figure 1, we clas-
sify existing research efforts into the following main areas:

1. deadline-agnostic schemes. These schemes consider
only the spatial dimension, i.e., they try to control
the sending rates and sending paths of data flows to
achieve their goals.

2. deadline-aware schemes. These schemes also con-
sider the temporal dimension, i.e., deadline require-
ments of data flows. By postponing non-urgent flows
to non-peak timeslots, these schemes can further im-
prove the efficiency of WANs.

3. store-and-forward schemes. These schemes allow data
to be stored in intermediate nodes to wait for free
timeslots of the next links.

4. schemes to minimize cost. These schemes aim to
minimize the cost payed to ISPs for the networking
resources of inter-DC WANs.

5. schemes to optimize welfare or revenue. These schemes
include a pricing module to encourage tenants or ap-
plications to report their demands and performance
requirements truthfully. The pricing module also
helps datacenter providers to optimize their econom-
ical goals.

6. schemes for P2MP requests. These schemes focus
on Point to Multi-Points (P2MP) transfer requests,
which are very popular in inter-DC WANs.

7. schemes with dynamic IP topology. The schemes in
this category are based on the technical develop-
ment of the optical layer. With the help of opti-
cal providers, datacenter providers can further con-
trol their IP layer topologies dynamically to optimize
their goals.

3



Figure 1: A summary and classification of inter-DC resource scheduling schemes proposed recently.

The remaining part of this article is organized as fol-
lows. Section 2 explains the elements in the formula-
tion of the scheduling problem and presents a conceptional
architecture of potential solutions. Section 3 discusses
deadline-agnostic schemes. Section 4 introduces deadline-
aware end-to-end schemes. Store-and-Forward schemes to
optimize network efficiency and transfer performance are
presented in Section 5. Section 6 and Section 7 describe
schemes with economic incentives, wherein one section fo-
cuses on cost minimization and the other focuses on wel-
fare/revenue maximization. Section 8 reviews the schedul-
ing schemes for P2MP requests. The only scheme with
dynamic IP topology is introduced in Section 9. In Sec-
tion 10, we summarize some practical issues in developing
and implementing a scheduling system, and we also de-
scribe how current schemes deal with them. In Section 11,
we present a discussion on open issues and possible future
directions. The article is concluded in Section 12.

2. The Problem of Resource Scheduling in Inter-
DC WANs

Consider a geographically distributed datacenter with
many (dozens in general) sites. In each site, there are a lot
of end hosts (physical servers or virtual servers) used by
different users or applications. They need to communicate
with end hosts in other sites. Therefore, the datacenter
operator builds an inter-DC WAN to connect these sites
together by leasing links or buying bandwidth of links from
ISPs.

Figure 2 illustrates such an inter-DC WAN connecting
five sites of a geographically distributed datacenter. Par-
ticularly, the left part shows its internal structure within
one DC site. Depending on the granularity we would like
to have, the end hosts can be aggregated into groups in
different levels for scheduling, such as job (hosts for the

Figure 2: Sites of one datacenter connected by its inter-DC WAN

same job), user (hosts for jobs of the same user), and site
(hosts in the same site). The smallest circles represent
end hosts. These hosts are used by three applications, i.e.,
App1, App2 and App3, represented by medium-size circles
with solid lines. Furthermore, App1 and App2 are run by
user A, while App3 is run by user B, illustrated by dot-
ted circles. Here we see a hierarchy of (host, application,
user). There can be hierarchies with more levels or differ-
ent levels to reflect more complicated business models of
datacenter operators.

How to schedule the data transfers generated by users
to make use of the networking resources of the inter-DC
WAN efficiently and satisfy users’ demands is an impor-
tant problem for the datacenter provider. In this article,
we refer to it as the resource scheduling problem. It is
naturally an optimization problem. With a particular ob-
jective function in mind, under the constraints of provi-
sioned resources, a datacenter provider solves the schedul-
ing problem and sets values for every decision variable,
i.e., scheduling dimension. DC operators can have differ-
ent scheduling objectives due to various business consid-
erations. On the other hand, one DC operator might also
have different scheduling dimensions, e.g., routing of data
packets, sending rate of each flow, provisioned bandwidth,

4



charges to users, and even WAN topology.
In this section, we would analyze the resource schedul-

ing problem from several prospectives. We would summa-
rize the types of data transfers, network models of datacen-
ters, possible scheduling objectives and scheduling dimen-
sions. Finally, we would present a conceptual architecture
summarized from most reviewed schemes.

2.1. Traffic Features and Types of Data Transfers

Typical inter-DC data transfer sizes range from tens
of terabytes to petabytes; deadlines range from millisec-
onds to a couple of days. Traffic flows may have different
requirements on their SLAs. For example, assume site A
accepts a user request and it needs to fetch some infor-
mation from remote sites to produce the response for the
user. The inter-DC traffic generated in this scenario is in
the critical path of user experience and must be delivered
without any delay. If a user is using Hadoop for com-
putation over distributed data sources in multiple sites,
the inter-DC traffic generated for remote storage access is
“elastic”, i.e., it only requires timely delivery before the
data being used.

Table 1 summarizes the properties and representative
applications of three traffic classes based on their time-
sensitivity. The traffic on the inter-DC WAN is a mix
of these three classes. In terms of volumes, interactive
traffic takes only a small portion of the overall inter-DC
traffic, e.g., 5%-15% [31]. While interactive traffic demand
is bursty and highly diurnal, the average volume over a
5-minute window is relatively stable and can be largely
predicted [32] [33]. It is also reported that background
traffic is dominant in Yahoo!’s inter-DC WAN [34]. For
Google’s B4, we know it is running a large-scale inter-
datacenter copy service whose traffic is elastic.

Obviously, interactive traffic must be transmitted im-
mediately, so it is the least flexible for scheduling. Elastic
traffic and background traffic are flexible, so they are good
objects for scheduling. For example, we can delay some
traffic with a farther deadline to make room for traffic
with a more urgent deadline.

Scheduling systems can process these traffic in two
ways, i.e., aggregated flows and requests. We would ex-
plain them in the following paragraphs.

2.1.1. Aggregated Flows

All traffic flows are aggregated into flowgroups for schedul-
ing. Each flowgroup consists of flows with the same source,
destination and traffic class (priority). Flowgroup can be
defined at different granularities, such as site-fg, cluster-
fg, and service-fg. The scheduling system monitors the
demanded rate of each flowgroup continuously. Obviously,
the demand is always changing. Therefore, the scheduling
algorithm runs periodically. At each timeslot, the algo-
rithm predicts the demand of each flowgroup from histori-
cal information and allocates networking resources among
flowgroups according to their demands.

2.1.2. Requests

Some scheduling systems require users to submit their
requests for data transfer. There can be two kinds of re-
quests, i.e., rate request which demands a fixed rate from
its source to its destination during a period, or elastic re-
quest which requires to complete a transfer of a specified
size from its source to its destination. In this article, “re-
quest” is usually used to indicate an elastic request. Either
explicitly or implicitly, a request is always associated with
a deadline. It can also be associated with a valuation and
a set of usable paths. If the user is requesting data trans-
fer from one source to multiple destinations, the request is
referred to as a P2MP request.

2.2. Network Model: Resource and Cost

In terms of resource, we should know whether storage
resources are available at each site. If available, the store
and forward mechanism can be exploited and we would
have more scheduling flexibility.

In terms of cost, we should know how the DC operator
buys networking resources. Generally, there can be three
cases. First, the DC pays for direct links among sites,
and ISPs are using the capacity-based charging model. It
means the DC has made a fixed provisioning decision and
it pays a fixed cost. The scheduling of data transfers is
constrained by link capacities. Second, the DC pays for
direct links among sites, and ISPs are using the usage-
based charging model. In this case, the transmission cost
is determined by the scheduling of data transfers. The
cost of one link can be calculated on the 95th percentile or
the maximum of bandwidth used on the link. Third, the
DC pays for the uplinks and downlinks of each site, using
either a capacity-based or a usage-based charging model.

Some DC operators can control the optical layer of
their WANs, which enables them to conduct cross-layer
scheduling. By configuring optical devices differently, they
can implement different IP layer topologies.

2.3. Scheduling Objectives

The scheduling system is to allocate networking re-
sources to all data transfers. In general, fairness and effi-
ciency are two primary concerns of any resource allocation
problem. Fairness focuses on the comparison of the pay-
off each individual achieves. Efficiency focuses on the total
payoff achieved by the inter-DC WAN, i.e., all individuals.

Note that payoff can be defined based on different met-
rics, then fairness or efficiency should be calculated based
on the definition accordingly. For example, the payoff of
one flow/request can be defined as its achieved sending
rate, total bandwidth consumption on all links, completed
fraction before its deadline, completion time, net profit
(valuation minus transmission cost), etc.

A surveyed scheme may aim for a single objective or
a tradeoff of multiple objectives, e.g., an objective on ef-
ficiency and an objective on fairness. In this subsection,
we would introduce some representative scheduling objec-
tives.

5



Traffic Class Other Names Priority Properties Representative Applications

interactive traffic highpri traffic high
delay-sensitive, volume small
and bursty, but average volume
relatively stable

client-triggered D2D (dc-to-dc), transit D2C (dc-
to-customer), U2D (user-to-dc)

elastic traffic
bulk transfers with dead-
lines

medium
deadline-aware, deadline is
within several minutes or hours,
large number of flows

distributed cloud computing such as MapReduce,
search index synchronizing

background traffic
large transfers with
soft/long deadlines or no
deadline

low
bandwidth-intensive, largest
volume

data replication for long-term storage

Table 1: Traffic flows on inter-DC WAN links

2.3.1. Fairness and Priority

There are several different ideas on judging whether
the result achieved by a scheduling algorithm is fair, such
as Proportional Fairness, Max-min Fairness or Weighted
Max-min Fairness. Proportional fairness indicates resources
should be allocated to users proportionally according to
their demands. With max-min fairness, resources are al-
located to all users equally until someone’s demand has
been satisfied or someone’s allocation cannot be increased
due to constraints (e.g., capacity limitation on some links).
Then the system would continue to allocate the remain-
ing resources to unsatisfied active users equally. Weighted
max-min fairness is similar, except that each user defines
a weight to reflect the incremental value of additional allo-
cation to it and resources would be allocated to unsatisfied
active users proportionally to their weights.

Max-min fairness is regarded as more practical than
proportional fairness because max-min fairness provides
better isolation [35]. In case that a large transfer in-
creases its demand suddenly, the allocation to other trans-
fers would not change and thus their performance would
not be affected.

Take weighted max-min fairness as an example. Let wi
denote the weight of user i, ri is its demand, and R is the
amount of resources for allocation. Mathematically, under
weighted max-min fairness, the resources allocated to user
i, denoted by bi, is computed as follows,

bi(α) = min(wiα, ri) (1)

wherein α is derived by solving
∑
∀i

bi(α) = R. Here,

bi(α) is referred to as a bandwidth function, and α is known
as fair share.

Equation 1 is defined for the scenarios where users are
competing for a single resource, e.g., the bandwidth of
a single link. It is a link-level fairness problem, which is
easy to solve. In the problem of inter-DC WAN scheduling,
data transfers are competing for the bandwidth of multi-
ple links. Hence, it must simultaneously account for multi-
ple potential bottlenecks, which is a network-wide fairness
problem. Progressive water-filling algorithm is a popular
way to solve network-wide fairness problems.

For scalability, one scheduling scheme may target at

hierarchical fairness. For example, as shown in Figure 3,
SWAN allocates networking resources in a max-min fair
manner at the granularity of site-fg. Traffic flows in one
site-p-fg may belong to different services, i.e., service-fgs.
The resources allocated to one site-p-fg is further assigned
to each of its service-fgs in a max-min fair manner. The
resource allocation from one site-p-fg to its service-fgs is
a link-level fairness problem because the service-fgs are
competing for a single resource, i.e., the bandwidth on
one path or on a set of paths (if multi-path routing) from
the source site to the destination site. In contrast, the
resource allocation among site-fgs is a network-wide fair-
ness problem because they are competing for resources of
multiple bottleneck links.

Figure 3: Hierarchical Fairness in SWAN

Weighted max-min fairness can discriminate the sig-
nificance of users. The user with a larger weight would
always receive more allocation. The other way to repre-
sent the significance of users is to assign each of them with
a priority. In this case, users with high priorities would be
satisfied before users with low priorities, while the resource
allocation should be fair among users with the same pri-
ority.

2.3.2. Efficiency

There are two types of efficiency objectives, namely,
network efficiency and economic efficiency.

Network efficiency objectives mean the inter-DC WAN
aims to provide best-effort or guaranteed service for flows
or requests as much as possible. Particularly, there are the

6



following possible metrics.

• maximize the network throughput

The throughput can be calculated as the total of
sending rates of all traffic flows transmitted over the
inter-DC WAN. A similar metric is “utilization” of
links, i.e., the rate of traffic flows on the link over
the link capacity. We can see that increasing utiliza-
tion of all links is roughly the same as maximizing
throughput.

• maximize the accept ratio or success ratio

Some scheduling schemes have an admission con-
trol module and accept requests only when they can
guarantee the performance for requests. In this case,
it is a possible objective to maximize the ratio of ac-
cepted requests. Similarly, the success ratio can also
be an objective which is calculated as the number
of requests completed successfully over the number
of accepted (or submitted if no admission control)
requests.

• maximize the total of completed fractions

Some schemes are deadline-aware but not deadline-
guaranteed. They may consider the completed frac-
tion before deadline as the payoff of one request. Ac-
cordingly, the efficiency objective is to maximize the
total of completed fractions of all requests. In this
case, the fairness objective can be to maximize the
minimum completed fraction of request traffic before
deadline.

• minimize the completion time

Since requests are competing for limited resources,
we cannot minimize the completion time simultane-
ously for all requests. For schemes that schedule all
requests simultaneously, they may aim to minimize
the average completion time. For schemes that serve
in a First-Come-First-Serve (FCFS) manner, they
can minimize the completion time for the single new
request.

In terms of economic efficiency, datacenter providers
have three possible objectives as follows.

• minimize transmission cost

Under usage-based charging, an inter-DC WAN al-
ways wants to minimize the monetary cost that is
paid to provision the WAN to transmit traffic of all
requests. Specially, datacenter providers can exploit
“free slots” to further reduce cost if p-th percentile
charging is used by ISPs.

Under capacity-based charging, since the network
provision cannot change frequently, we may consider
that the operation cost has been fixed. Therefore,
the datacenter provider would focus only on network
efficiency objectives.

• maximize social welfare

Social welfare is defined as the total valuation of all
transmitted requests minus the transmission cost. In
order to achieve this objective, the scheduling system
must be aware of or be able to estimate the valuation
of each request. It is a natural objective for private
providers which provide services only for internal ap-
plications.

• maximize revenue or profit

Some schemes have pricing modules to charge users
for their requests. A public inter-DC WAN always
wants to maximize its revenue or profit (in case that
cost is under consideration). However, in [36], the
authors argue that social welfare should be the ob-
jective instead of profit even for profit-driven public
providers due to the highly competitive market.

2.4. Scheduling Dimensions

In order to achieve their objectives, datacenter providers
need to control or affect data packets and users in various
dimensions. Basically, they include but not limited to the
following dimensions.

• Space.

It refers to the routing paths of one flow/request
and also sending rates on these paths. One schedul-
ing scheme may prefer single-path routing to avoid
re-ordering, or it may prefer multi-path routing for
network efficiency. The usable paths can be given as
an input to reduce the computational complexity of
the scheduling problem.

• Time.

It refers to the timeslots used for the transmission
of one elastic request and also sending rates in each
timeslot (may also on each of multiple paths). Only
elastic requests can be scheduled across the temporal
dimension.

• Storage.

If in-network storage nodes are available, the store-
and-forward mechanism can be used to further im-
prove the usage of networking resources. For exam-
ple, without store-and-forward, a path can be used
for transmission only when all links on the path are
available. While with store-and-forward, data pack-
ets can be transmitted on a link once the link is idle
and stored there until idle timeslots of the next hop.

• Provisioning.

If ISPs are using usage-based charging, datacenter
operators can minimize their operation costs paid to
ISPs by controlling the provisioning of each link. It is
often used together with other scheduling dimensions
such as space and time.

7



• Pricing.

A datacenter operator needs to charge its users to
receive monetary revenue or at least cover its cost.
A proper pricing mechanism can be used to achieve
various goals. For example, resources in light-loaded
timeslots can be priced less to encourage users avoid-
ing busy periods.

• Cross-Layer.

If the optical layer is intelligent with the support
of modern Reconfigurable Optical Add-Drop Mul-
tiplexer (ROADMs), datacenter providers can con-
struct IP networks dynamically to adapt to the de-
mands of users.

2.5. Conceptional Architecture of Solutions

We summarize main surveyed schemes in Table 2 and
present the main features in their problem formulations,
such as network model, scheduling objectives, scheduling
dimensions, etc. The column of “policy” presents their
scheduling policies, wherein “periodical” means that the
scheduling decision is made for all active requests at the
beginning of each timeslot and “FCFS” indicates that the
scheduling decision is made for a request when it arrives
and the resource is allocated on a first-come-first-serve ba-
sis. The next column “type of transfer” presents how the
scheduling system gets the information on users’ demand.
Some scheduling schemes monitor the flows in the WANs
and make scheduling decisions based on their measure-
ments, which is denoted as “flow” in the table; “request”
indicates that the scheduling system requires one user to
specify the information on its requests explicitly, e.g., size,
deadline, or valuation. The concept of “flow” and “re-
quest” is introduced in Section 2.1. In some schemes, a
user also specifies a set of available paths for each trans-
fer, and the scheduling scheme only needs to select some
paths in the set and split the traffic demand among these
selected paths. It can greatly reduce the problem com-
plexity. Whether the paths are given is indicated in the
column “paths given”. The next two columns introduce
the network model, i.e., whether the amount of usable re-
source and the corresponding cost are fixed, and whether
in-network storage is available. The concept of network
model is introduced in Section 2.2. The column “objec-
tives or payoff” presents the scheduling objective, which is
introduced in detail in Section 2.3. The last three columns
characterize the possible cases of scheduling solutions, e.g.,
whether the solution can select multiple paths for a single
data transfer, and whether admission control is conducted
so that some requests would be rejected when the resources
are insufficient. The possible scheduling dimensions are in-
troduced in Section 2.4.

Figure 4 shows the conceptional architecture that we
summarize from recent solutions to the inter-DC WAN
scheduling problem. It mainly includes the following mod-
ules.

Figure 4: Conceptional Architecture of Scheduling Systems.

• User State. This module monitors the behaviors of
users (e.g., hosts, services, and requests) and pro-
vides information about current user requests to the
Optimization Algorithm. In some solutions, it is also
responsible for predicting users’ future behavior. Af-
ter the Optimization Algorithm computes the opti-
mal allocation, the User State module may receive
decisions such as admission control (accept or reject),
pricing, and sending rate of each user. Then it has
to make sure each user cannot exceed its assigned
sending rate. Please note the User State module is
often implemented distributedly. For example, each
service can have its own “user state” module, i.e.,
service broker.

• Network State. This module learns the state of the
network continuously and reports the up-to-date global
view of the network topology, available resources and
traffic demands to the Optimization Algorithm. In
some solutions, it is also responsible for predicting
the dynamics of the network. After the Optimiza-
tion Algorithm computes the optimal allocation, the
Network State module may receive requests to con-
figure rate limiting and forwarding rules on network
devices. Then it has to make sure these configura-
tions take effect in all sites of the datacenter. Sim-
ilar to User State, Network State module is often
implemented distributedly. For example, each site
can have its own “network state” module, i.e., site
agent.

• Optimization Algorithm. Given the information on
networks and users, considering various goals, this
module computes the optimal scheduling decisions,
including but not limited to, admission decisions,
pricing decisions, sending rates, routing paths and
allocated bandwidth for flows or requests. The com-
puted results are sent to Enforcer for the enforcement
in the datacenter.

8



Table 2: Surveyed Schemes and Their Problem Formulation.

Schemes policy
Input Information Network Model Objectives

or
Payoff

Solution

type of
transfer

paths
given?

provisioning storage multi-
path?

admission
control?

scheduling
dimensions

SWAN [32] periodical flow Y fixed N/A
throughput

fairness
Y N space

B4 [37] periodical flow Y fixed N/A
throughput

fairness
Y N space

BwE [35] periodical flow Y fixed N/A
throughput

fairness
Y N space

Tempus [33] periodical request Y fixed N/A
completed
fraction

Y N space, time

Amoeba [31] FCFS request Y fixed N/A
deadline-

guaranteed
Y Y space, time

PGA [38] FCFS request Y fixed N/A
deadline-

guaranteed
Y Y space, time

DCRoute
[39]

FCFS request N fixed N/A
deadline-

guaranteed
N Y space, time

NetStitcher
[40]

FCFS request N fixed Y
completion

time
Y(chunk) N space, time,

storage

Elastic TEN
[41]

periodical request N fixed Y congestion Y N space, time,
storage

Elastic TEN
[42]

periodical request N fixed Y
completed
fraction

Y N space, time,
storage

BDT(HEU)
[43]

FCFS request N fixed unilimited throughput Y(chunk) Y space, time,
storage

Jetway [44] periodical request
(rate)

N usage-based N/A cost Y N
space, time,
provisioning

GRESE [45] periodical request N/A usage-based N/A cost N/A N
space, time,
provisioning

Postcard [46] periodical request N usage-based Y cost Y N
space, time,

storage,
provisioning

TrafficShaper
[47]

periodical request N/A
usage (up,
downlinks)

N/A cost N/A N space, time,
provisioning

Shapley [48] FCFS
request

(valuation)
Y usage-based N/A welfare N auction space, time,

provisioning,
pricing

Pretium [36] both
request

(valuation)
Y usage-based N/A welfare Y auction space, time,

provisioning,
pricing

Uniform [49] N/A
request

(valuation)
N/A fixed N/A revenue N/A auction pricing

Blossom [50] periodical
request

(P2MP)
Y fixed N/A throughput Y N space

DCCast [51] FCFS
request

(P2MP)
N fixed N/A

completion
time

N N space, time

Airlift [52] periodical
request

(P2MP)
N fixed N/A throughput Y N space, time

AGE [53] N/A
request

(P2MP)
N fixed N/A

the number

of receivers
N/A N space, time

OWAN [54] periodical request N N/A N/A throughput Y N
crossN/Alayer,

space, time

9



• Enforcer or Scheduler. This module is responsible
for the enforcement of decisions in the datacenter.
For example, we may need to configure tunnels to
implement routing paths, update forwarding states
of switches, and configure rate limits on hosts and
devices. Moreover, frequently re-configuring the net-
work can cause transient congestion, even packet
loss, that can heavily hurt latency-sensitive traffic.
This Enforcer module needs to orchestrate all these
configuration activities to avoid such situations and
send configuration requests to service brokers and
network agents.

Since the state of users and networks is dynamic, ob-
viously the scheduling system should run online to adapt
to the changes of network and user requests. It can be
request-driven or periodical.

Request-driven. The scheduling decision is recom-
puted when one new transfer request comes. If the new
request can only use the leftover resources from existing
requests, the scheduling is referred to as FCFS. FCFS can
retain the scheduling of existing requests, thus their per-
formance would not be affected by later requests. It also
reduces computational complexity, but may not be able to
reach the optimal solution.

Periodical. Such scheduling systems discretize time
into timeslots and recompute the decision at the begin-
ning of each timeslot. Then the bandwidth allocation
is fixed within a timeslot but can vary across different
timeslots. The length of timeslot must be set properly
to achieve a reasonable tradeoff between performance and
overhead. If it is too long, the algorithm cannot adapt to
network dynamics quickly and the scheduling performance
would degrade. If it is too short, the algorithm would run
too frequently which incurs a lot of costs on computation
and configuration update. Moreover, since the network
needs time to converge after a scheduling decision is imple-
mented, the possible timeslot length must be longer than
the convergence time. In general, it is much coarser than
TCP time-scale, (e.g., minutes vs. RTT of 100ms).

Although the scheduling can be formulated as opti-
mization problems intuitively, how to solve the formulated
problems is often a challenge, partly because there are a
lot of decision variables and constraints. Therefore, re-
searchers have to design techniques and heuristics to solve
them efficiently. Further, we must consider various practi-
cal design and implementation issues, such as accuracy of
predictions, untrusted users, and unexpected failures.

3. Spatial Scheduling: Maximize Utilization with
Fairness

DC providers always would like to increase inter-DC
link utilization to extract more revenue or operate at a
lower cost. As we have explained, link utilization in the
traditional Internet cannot be too high because it can re-
sult in serious packet loss which is deadly for performance-

sensitive traffic flows. In an inter-DC WAN, such a prob-
lem can be solved by providing services with different pri-
orities, i.e., high priorities for sensitive traffic and low pri-
orities for other flows. Packets with high priority are al-
ways processed immediately in a preemptive manner. In
this way, DC providers can push its link utilization to a
high value by scheduling the sending rates and routing
paths of traffic flows, without the need to worry about
network performance.

Based on this idea, researchers from Microsoft and
Google proposed three scheduling schemes, namely, SWAN,
B4 and BwE. They aggregate traffic flows into FGs (flow
groups) at specified granularities, e.g., source-destination
site pair. Then they take as inputs the demand of each
FG, the capacity of each link in the inter-DC WAN, and
the usable paths (tunnels) for each FG. The scheduling
algorithms of these schemes are to determine the rate of
each FG that can be transmitted over the WAN, and the
fraction of FG traffic to be forwarded along each usable
path, i.e, split ratio.

3.1. SWAN: Iterative MCF for Max-min Fairness [32]

SWAN allocates resources by invoking its scheduling
algorithm separately for classes in priority order. After a
class is allocated, its allocation is removed from the re-
maining link capacity. Therefore, the high priority traffic
flows are satisfied before the low priority traffic flows get
their allocations.

For traffic flows within a priority class, SWAN sets two
parameters, α (> 1) and U , and computes the solution
with network-wide max-min fairness iteratively.

• In each iteration step k, SWAN solves a MCF (multi-
commodity flow) problem with the objective func-
tion to maximize total throughput of all flows and
constraints that flows are allocated rates in the range
[αk−1U,αkU ] but no more than their demands. Solv-
ing this MCF problem formulated by SWAN would
give a rate allocation and a routing decision for each
flow.

• A flow’s allocation is frozen at step k when it is al-
located its full demand or it receives a rate smaller
than αkU due to the capacity constraints. The frozen
flows have got their final allocations and would not
take part in later steps.

In terms of efficiency, the above algorithm can maxi-
mize the total throughput of all flows by solving MCF in
each step. In terms of fairness, it achieves approximated
max-min fairness by starting the iteration from small allo-
cation and freezing the flows constrained by link capacities
at each step. It can be proved to be an α-approximation
algorithm.

The two parameters, α > 1 and U > 0, are used to tune
the tradeoff between fairness and runtime. The algorithm

runs T = dlogα
max(di)

U
e steps (di is the demand of fgi),

10



therefore its runtime decreases if we use a larger α and a
larger U . On the other hand, the resulting allocation is
more close to the max-min fair solution as α is more close
to 1. The authors state its allocation is highly fair and
takes less than a second combined for all priorities.

3.2. B4: Progressive Water-filling for Weighted Max-min
Fairness [37] [55]

In Sigcomm 2013, where SWAN was published, re-
searchers from Google also published a paper on boosting
the utilization of inter-datacenter networks by centrally
controlling traffic flows. Their inter-DC WAN is called
as B4 [37]. Different from many other proposals, B4 had
been in deployment for three years when the work was pub-
lished. B4 consists of more than ten sites, and over 90%
of Google’s internal application traffic runs across B4.

Instead of specifying multiple priority classes, B4 speci-
fies a weight for each application, which means linear band-
width functions are used. It then aggregates bandwidth
functions for applications into piece-wise bandwidth func-
tions for site-fgs and delivers weighted max-min fair allo-
cations to site-fgs.

B4 also assumes that a set of usable paths has been
known for each FG. It allows DC providers to specify a
cost for every edge and assumes that the shortest path
with available bandwidth is always preferred.

B4 uses the idea of progressive filling to solve its network-
wide weighted max-min fair allocation problem. The al-
gorithm starts with the fair share α = 0 and increases α
gradually. For a given α, the allocated sending rate of
each FG can be derived according to its bandwidth func-
tion. At the beginning, all FGs choose the shortest path
in their own path sets. As the rate and the path of each
FG have been known, the traffic rate on every link can be
computed as a function of α.

With the increase of α, the traffic rate on one link
would hit its capacity limit, and the link becomes a bot-
tleneck link. Since there is no more resource on this link,
all FGs transmitted on this link should be frozen on their
corresponding paths, and each of them needs to choose a
new shortest path from remaining unfrozen paths for more
transmission rate. If all paths of one FG have crossed bot-
tleneck links, the FG has reached its final allocated sending
rates on all usable paths. Other FGs can continue to re-
ceive more allocations on their paths without bottlenecks.
The algorithm continues until all FGs have frozen all their
paths. We can see that B4 just pushes traffic flows to
inter-DC links as much as possible, instead of maximizing
throughput by solving maximization problems directly as
in SWAN.

In order to enforce the scheduling on hosts and switches,
the solution computed by B4 is presented in the format of
a sending rate and a split ratio for each FG. The desired
split ratios may not be implementable on switches due to
the hardware capability limitation, therefore the result-
ing split ratios have to be approximated. For example,

a switch that only supports a splitting granularity of 0.5
has to approximate a resulting ratio (0.3, 0.7) to either
(0, 1) or (0.5, 0.5). Such an approximation can affect the
efficiency and fairness of the final solution. BwE in the
next subsection can take the approximated ratios as input
and compute a new sending rate for each FG under the
implementable ratios.

3.3. BwE: Hierarchical Multi-Path Fair Allocation [35]

In Sigcomm 2015, researchers from Google presented
a paper on BwE (bandwidth enforcer) and disclosed more
details on its inter-DC WAN. It also uses the idea of the
progressive filling algorithm to find out the allocation with
global max-min fairness. But it enables more complex
features, thus it can be regarded as a complement and
extension to B4.

Hierarchical Allocation with Policies at Two Lev-
els. As shown in Figure 5, BwE implements a hierarchical
host-based allocation architecture. Hierarchical architec-
ture is used in many scheduling schemes, but BwE has
some unique features, which might be due to Google’s busi-
ness considerations.

BwE considers inter-cluster (intra-site) links may also
be bottlenecks, so the allocation should be done at the
cluster-level instead of the site-level topology. Moreover,
BwE requires that the allocation should respect policies
at both site-fg and user-fg levels at the same time. The
bandwidth function of one cluster-fg is derived as the sum
of predefined bandwidth function of its child user-fgs, but
site-fg’s bandwidth function is defined independently in-
stead of summing up cluster-fgs.

BwE designs a Bandwidth Function Transformation al-
gorithm to transform cluster-fgs’ bandwidth function Bcfi
to effective bandwidth functionBecfi , which is a new cluster-
fg’s bandwidth function respecting site-fg’s priority con-
figurations. Then the allocation problem is solved at the
level of cluster-fgs using Becfi by the progressive water-
filling algorithm. BwE considers jobs of a user have the
same priority and tasks of a job also have the same pri-
ority. Therefore, at these two levels, BwE just splits the
allocation to the parent node among its children based on
their estimated demands in a max-min fair manner.

Complex Bandwidth Functions for Priority Classes.
BwE allows operators to specify complex (non-linear) band-
width functions, while B4 only allows linear functions for
applications. For example, BwE can define two regions of
fair share, i.e., Guaranteed (0−2) and Best-Effort (2−∞).
Assume a FG fg1 has a demand of 20Gbps. It requires a
guaranteed bandwidth of 10Gbps with a weight of 10, and
upon reaching such an allocation, it still requires best-
effort bandwidth with a weight of 10. Then fg1’s band-
width function can be specified as

B1(α) =

 min(10α, 10) α ∈ [0, 2]

min(10 + 10× (α− 2), 20) α ∈ [2,∞]

11



Figure 5: BwE: hierarchical fair allocation and enforcement

In this way, BwE realizes the same goal as SWAN, i.e.,
allocating bandwidth in strict precedence across different
priority levels, and allocating bandwidth fairly within a
priority level. The flexibility of bandwidth functions is
also useful for applications such as video streaming with
adaptive bitrates. For these applications, only sufficient
additional bandwidth to enable a higher bitrate is useful.

MultiPath Fair Allocation (MPFA). As shown in
Figure 5, BwE takes (tunnels, weights) as input, which in-
cludes a set of tunnels for each site-pair and each cluster-
pair, and also the split ratios among tunnels in each set,
i.e., weights. BwE also uses the idea of the progressive
filling algorithm, but data packets of each FG are trans-
mitted over all usable paths at the same time with the
given split ratio. As α increases, there are more and more
traffic volumes on every usable path. Once there is a sat-
urated link on any path in its path set, the FG will be
frozen on all its paths and it has got the final allocation.
BwE outputs a sending rate for each FG as the solution.

BwE can improve network utilization compared to the
approximated solution produced by B4. Taking the ap-
proximated split ratios produced by B4 as input can re-
duce the complexity of BwE’s scheduling algorithm.

4. Spatial-Temporal Scheduling: End-to-End

Given available networking resources and the demands
of flows, SWAN, B4, and BwE determine the sending rate
and routing paths for each flow in a single timeslot. They
run their scheduling algorithms periodically and guarantee
that each flow can get a fair allocation in the timeslot
under scheduling. However, they cannot guarantee the
performance of flows that span multiple timeslots.

Assume a large file or a dataset is required to be sent
from one site to the other site before a deadline. Spatial
scheduling schemes cannot guarantee its success directly.
They have to transform the original deadline requirement
to a more stringent requirement, i.e., a bandwidth demand

in every timeslot before its deadline. Obviously, it is far
from optimal because the elasticity of the data flow is not
exploited. Intuitively, we would like to allocate more band-
width to it in light-loaded timeslots, so that more band-
width in heavy-loaded timeslots can be used by other ur-
gent transfers. By shaping peaks and troughs, scheduling
in the temporal dimension can improve the network effi-
ciency.

We see that elastic transfers should be scheduled in
both spatial and temporal dimensions. We refer the schemes
that consider both dimensions as Spatial-Temporal Schedul-
ing. They exploit temporal features of delay-tolerant trans-
fers and conduct optimization on all timeslots during dura-
tions of transfers. In contrast, spatial scheduling schemes
only consider a single timeslot in each running.

Spatial-temporal scheduling schemes can achieve two
objectives: improve or guarantee deadlines of transfers,
and maximize the utilization of networks by exploiting
flexibility in both of two dimensions. Some of these schemes
are also referred to as deadline-aware or deadline-guaranteed.
In contrast, spatial scheduling algorithms are always deadline-
agnostic.

Deadline-aware schemes should have a richer service-
network interface to allow users to express more details
of their transfer requests, such as the total bytes and the
deadline of each transfer. Moreover, it is possible that
a request is rejected because the system cannot allocate
sufficient resources to guarantee the request is satisfied.

Different deadline-aware schemes specify transfer re-
quests in a similar way as follows. One request is defined
by a tuple (bi, di, Di, si, ti, Pi) where bi is the begin time of
the transfer request; di is the deadline; Di is the demand
(total bytes) of the request; si is the source node of the
data flows of the request; ti is the target node; Pi is the
set of admissible paths from si to ti. In some schemes,
users can submit one request before the request can be
transmitted, then the tuple would have one more element,
ai, the aware time in which the system becomes aware of

12



the request. Please note knowing the request earlier can
help the system to find a better solution. In case that the
request is with a soft deadline, a value function replaces
the strict deadline di.

Most schemes use “transfer” and “request” interchange-
ably. Some schemes, such as Amoeba, notice some trans-
fers are co-related, e.g., shuffle transfers from several map-
pers to a reducer in MapReduce. These transfers are useful
only after all transfers are completed. Amoeba allows ten-
ants to specify such a demand by submitting a request
R = {T1, ..., Tn}, where Tis are transfers with identical
deadline requirements.

Given the network state (topology and links’ capacity)
and user requests, a deadline-aware scheme runs a logically
centralized algorithm to determine fi,p,t, i.e., the amount
of bandwidth allocated for request i on path p ∈ Pi in
timeslot t. Please note although the scheduling algorithm
runs once a timeslot, each running of it considers all future
timeslots within a sliding time window.

4.1. Tempus: Efficiency and Fairness in Terms of Com-
pleted Fractions [33]

Tempus is published by researchers from Microsoft in
Sigcomm 2014. It focuses on the fraction of completed vol-
ume before the deadline of each transfer, say γi. Tempus
first aims to maximize the smallest fraction, which corre-
sponds to a fairness objective. After it is maximized, some
links might remain under-utilized. Tempus then tries to
maximize the sum of completed fractions of all requests
(U = max

∑
∀i γi), which corresponds to an efficiency ob-

jective. We can see that it does not guarantee the comple-
tion of any transfers.

Unfortunately, it is very challenging to solve the above
problem because of millions of variables and constraints.
Assume the smallest completed fraction is γ, and assume
the sum of completed fractions of all requests is at least
U . The problem to find a feasible solution fi,p,t to sat-
isfy the given γ and U , denoted as LP (γ, U), is in fact a
packing-covering problem, where the edge capacities are
packing constraints and the request satisfactions are cov-
ering constraints. This packing-covering problem can be
solved using Young’s algorithm [56], which is an iterative
solver.

As an iterative solver, Young’s method has a very use-
ful property in this scenario, i.e., the solution for the
current timeslot is a feasible searching point for the new
scheduling problem in the next timeslot. In the next times-
lot τ , the allocation for old requests are retained; Tempus
conducts a water-filling process, i.e., gradually increase γ
from 0, to allocate resources for new coming requests as
long as LPτ (γ, U) is feasible. During this process, U is
kept as same as the previous timeslot. Once the water fill-
ing process stops, γ is then fixed and Tempus continues to
search for the largest feasible U .

Due to the above property, the computation complex-
ity is reduced, which makes Tempus practical in real-world

networks. The authors state that Tempus is efficient in
terms of running time, memory usage, and updating over-
head.

4.2. Amoeba: Deadline-guaranteed and FCFS [31]

Tempus is deadline-aware but not deadline-guaranteed.
It maximizes the minimum completed faction of all trans-
fers. However, for many applications, partial data transfer
is useless and the deadline must be met for the transfer to
be useful. Noticing it, Amoeba sets its objective as to
maximize the number of transfers that are completed be-
fore their respective deadlines. As a deadline-guaranteed
scheme, Amoeba has to reject some requests when the de-
mand of requests is more than the network can accommo-
date. This is done by the admission control module, which
does not appear in SWAN, B4 and Tempus.

Amoeba does not think that fairness is necessary among
all requests. It serves requests in a FCFS manner. When
a new request comes, re-scheduling all admitted requests
may yield optimal result but the algorithm would be time
consuming and cannot scale. Amoeba starts from the old
solution to search for a new solution using heuristics. In
this way, Amoeba balances its scalability and optimality
and also makes it more practical.

Time-Expansion Graph Approach. Time-Expansion
Graph Approach is used by Amoeba to transform its net-
work layer topology to a temporally expanded flow graph
to incorporate two dimensions, i.e., time and space, in
one graph. This approach is popularly used by multi-
ple spatial-temporal schemes. Figure 6 shows the example
presented in [31].

Figure 6: An example of a temporally expanded flow graph (adapted
from [31]).

Basically, in this approach, the network topology, to-
gether with link capacities, is duplicated multiple copies,
each copy for one timeslot. For each transfer Ti, Amoeba
adds a pair of supernodes Si and Di and connects Si (Di)
to the source (destination) DCs in the timeslots within Ti’s
possible transmission period. For example, Figure 6 shows

13



a request R that includes two transfers, wherein T1 is from
DC1 to DC4 within timeslots [1, 2] and T2 is from DC1 to
DC2 within timeslots [2, 3].

Opportunistic Rescheduling with Admission Con-
trol. When a new request comes, Amoeba first computes
whether the new request R can be accommodated without
changing the schedules of accepted requests. In order to
answer this question, Amoeba assigns weights to the edges
from the supernode Si to the source DCs in different times-
lots, and the earlier timeslot has smaller weight. Then
Amoeba solves a min-cost flow problem (MCFP) on the
temporally expanded flow graph. Since earlier timeslots
are always preferred due to their lower cost, the solution,
which is with minimum cost, gives the earliest timeslot,
say t′, in which R can be completed.

If t′ is later than R’s deadline, accepted requests must
be rescheduled to try the best to accommodate R. In or-
der to avoid the complexity of solving optimization prob-
lems directly, Amoeba depends on two heuristics to select
requests for rescheduling. In the first heuristic, Amoeba
selects all accepted requests that use links on R’s paths
within R’s starting time and deadline, and it then tries
to move their volumes to timeslots before and after R’s
transmission time window. In the second heuristic, it se-
lects existing requests who have a lot of traffic that goes
through R’s bottleneck link or have a small overlapping
time period with R. The affected traffic of selected re-
quests and R are scheduled together using MCFP to find
the shortest completion time.

After trying to reschedule transfers using two heuris-
tics, if the completion time is still later than R’s deadline,
R should be rejected.

4.3. PGA: Mixture of Hard and Soft Deadlines [38]

Tempus aims to maximize the sum of completed frac-
tions of all requests, and it does not guarantee the comple-
tion of transfers. It means Tempus is assuming that all re-
quests are with soft deadlines. On the other hand, Amoeba
would reject an arriving request if it cannot find sufficient
resources to complete the transfer. It means Amoeba is
assuming that all requests are with hard deadlines.

In [38], the authors notice that inter-DC data transfer
requests are with a mixture of hard and soft deadlines.
They argue that the completion of transfers with hard
deadlines should be guaranteed and transfers with soft
deadlines should be delivered in a best-effort manner to
improve network utilization. Then they propose a revenue
model, wherein the datacenter provider can get positive
revenue from each deadline-met byte and it needs to pay
penalty (negative revenue) for each deadline-missed byte.
Two parameters, the revenue coefficient and the penalty
coefficient, are specified for each request. The penalty pa-
rameter is set to be a very large value for a transfer request
with a hard deadline.

With the revenue model, the scheduling problem is for-
mulated as an optimization problem aiming to maximize

the provider’s revenue. Based on the primal-dual method,
the authors design an online algorithm to efficiently make
a resource scheduling decision for each transfer at its ar-
rival. Their theoretical analysis proves that the achieved
value by the algorithm is at least (e− 1)/e of the optimal
offline solution with complete knowledge of future requests
at a cost of little link capacity augmentation.

4.4. DCRoute: Single-Path Routing and As Late As Pos-
sible [39]

DCRoute also serves requests in a FCFS manner with
admission control, and it solves the scheduling problem
based on heuristics. But it is different from Amoeba in
several ways.

First, DCRoute argues that transmitting a single trans-
fer on multiple paths is likely to cause packet reordering
and degrade its TCP throughput. Therefore, DCRoute
only chooses one path for each transfer, and this routing
decision would not be changed during transmission.

Second, DCRoute totally depends on heuristics to find
an approximate solution. Please note even Amoeba, which
also exploits heuristics, needs to solve MCFP for each
new request. The authors argue that a scheduling deci-
sion should be made in a time as short as possible, and
DCRoute is stated to be at least 200 times faster than
techniques based on linear programming.

When a new request arrives, its working procedure is
as follows.

Path Selection (spatial scheduling). DCRoute re-
tains the scheduling of existing requests as before, and
it selects a most preferable path for the new request. The
path selection is based on three metrics: 1) the sum of
load (including existing requests) on all links over the se-
lected path during its transmission period. The path with
a smaller total load is preferred. 2) the bottleneck load,
i.e., the load on the link with the maximum load given the
path is selected. The path with a smaller bottleneck load
is preferred. 3) the path with a smaller number of hops
is preferred. In this way, DCRoute tries to spread traffic
more evenly on all links, which is thought to be beneficial
to accommodate more future requests.

Admission Control and Temporal Scheduling.
After the path is determined, it tries to allocate the de-
mand to the timeslots as late as possible (ALAP). In this
way, the new request would use resources only when it is
necessary to meet its deadline, and the closest timeslots
can be used for requests with the most urgent deadlines.
If the resource of the path during its transmission period
is insufficient, the request would be rejected.

Pull Back. Obviously, the ALAP scheduling can cause
that the current timeslot is underutilized. In order to fully
utilize the current timeslot, DCRoute pulls the traffic in
the closest timeslots to the current timeslot as much as
possible.

Push Forward. After the pullback, some later re-
sources are released, and it is possible that the paths for

14



some requests become available in later timeslots than
their current scheduling. According to the ALAP princi-
ple, the traffic of these requests is pushed forward to later
timeslots.

5. Spatial-Temporal Scheduling: Store and For-
ward

No matter deadline-agnostic or deadline-aware, all schemes
mentioned before are direct End-to-End transfers, which
means traffic flows are transmitted from sources to des-
tinations without longtime in-network storage. In other
words, all nodes and links on the path must be available
for the path be used by a transfer. But what if there is no
overlapping available hour for all links on the path?

Let us consider the following scenario. A datacenter
site A on the East Coast has free capacity during its early
morning hours (e.g., 8 − 11am GMT), and it wants to
maximize the volume of data that it can backup to another
site B within 24 hours. If B is also free during this period,
we can transmit data between these two sites using a direct
e2e transfer during these non-peak hours. But what if B is
located on the West Coast of USA and its non-peak hours
are 12pm− 3pm GMT? A and B do not have overlapping
non-peak hours. All schemes mentioned before cannot help
datacenter operators.

The reason that those schemes cannot work is that
all of them only consider end-to-end transmissions. If
the DC operator also runs a site C in the Central USA,
which is free from 10am to 1pm, the Store and Forward
(SnF) mechanism would ask A to send data to C during
10−11am, and C relays the data to B during 12pm−1pm.
In this way, the DC operator can exploit the left-over band-
width to complete the transfer from A to B, with the ex-
tra cost of C’s uploading and downloading bandwidth and
also storage. Furthermore, if there are other sites which
can serve as relay nodes, the volume of data transferred
from A to B can be further increased.

SnF has been widely used in Delay Tolerant Networks
(DTN) [57] wherein it is impossible or difficult to establish
end-to-end connections between sources and destinations
due to highly unpredictable environments and moving des-
tinations. It can be viewed as a temporal-expansion of
routing. In [58] [59], the authors propose a novel busi-
ness model of Internet Post Offices (IPOs), i.e., collect-
ing delay-tolerant traffic from users and scheduling them
efficiently with the support of network attached storage
nodes. The nodes can be deployed by a CDN, a federation
of access ISPs, or a transit provider. If the network at-
tached storage nodes are widely deployed with proper pric-
ing schemes, SnF could become a popular way to transmit
all delay-tolerant traffic flows in the Internet.

The inter-DC scheduling schemes based on SnF gener-
ally formulate the scheduling problem as follows. A large
file to be transmitted from a source site is split into pieces
or chunks, and each individual piece is scheduled across

space and time to use all available networking and stor-
age resources of relay nodes to optimize a particular goal.
There are also some SnF-based schemes that are designed
to schedule requests instead of chunks of a single file. We
do not see any significant difference between a chunk-based
model and a request-based model.

Obviously, the throughput enabled by the SnF mech-
anism can only be used for non-real-time applications. In
the following subsections, we briefly summarize three rep-
resentative SnF scheduling schemes.

5.1. NetStitcher: MFP on Time-Expansion Graph [40]

Researchers from Telefonica (which operates a CDN)
noticed that the demand of an area followed strong diur-
nal patterns with high peak to valley ratios, wasting net-
work resources during non-peak hours. In [40], the authors
propose NetStitcher, a scheme based on the SnF mecha-
nism, that uses left-over bandwidth at different sites (relay
nodes) to minimize the completion time for a non-real-time
transfer request.

Minimizing Completion Time. NetStitcher works
in a FCFS manner, and each new request only uses the
residual resources left by old requests to minimize its trans-
fer time. In order to find the minimum completion time,
NetStitcher gradually increases the number of timeslots
used for transmission and computes the maximum flow
volume that can be sent during these timeslots. Once the
maximum flow volume is larger than the demand, the min-
imum transfer time (number of timeslots) is found. There-
fore, the original problem is transformed into a series of
MFPs on a time-expansion graph.

Incorporate Storage, UpLinks and DownLinks.
As a SnF scheme, the time-expansion graph of NetStitcher
should incorporate more factors than Amoeba. The capac-
ity of a link connecting two different nodes in a timeslot
is set to be the available bandwidth of the overlay link in
the timeslot, and it means the link is carrying data across
different geographical locations. This is the same for all
time-expansion graphs. Besides it, in NetStitcher, the ca-
pacity of a link connecting the same node in two conse-
quent timeslots is set to be the storage size of the node,
and it means the node is carrying data across time. More-
over, each relay node has limited downlink bandwidth and
uplink bandwidth. In order to incorporate these possible
bottlenecks, each node is split into three parts, i.e., the
front part is used for modeling the downlink bottleneck,
the middle part models the storage capacity, whereas the
back part models the uplink bottleneck. The sender node
has only a back part and the receiver has only a front part.

After the time-expansion graph is constructed, the MFP
problem for scheduling a request can be solved using the
Ford-Fulkerson (FF) method, which is a well-known greedy
algorithm for MFP.

15



5.2. Elastic TEN: Elastic Time-Expansion Network [41]
[42]

Both Amoeba and NetStitcher duplicate the original
network for every single timeslot, which unnecessarily re-
sults in a very large time-expansion graph and expensive
computational cost. In [41] and [42], the authors propose
to expand the original network elastically, i.e., one dupli-
cation representing a time window including a different
number of timeslots.

In [41], the authors argue that the congestion of all
links should be minimized as much as possible instead of
only minimizing the congestion of the bottleneck. There-
fore, they define the concept of “lexicographical minimiza-
tion”, which means the congestion of the bottleneck should
be minimized first, then the congestion of the next bottle-
neck should be minimized, and so on. In [42], the authors
aim to provide max-min fairness among requests in terms
of completed fractions. Although these two works are pro-
posed for different objectives, their formulated problems
can be solved by similar algorithms.

Determine Elastic Time Windows. They first ag-
gregate consecutive timeslots with the same amount of net-
working and storage resources into a time window. Second,
they further split these time windows by the start time
and deadline of each request. In this way, within one time
window, both the demand and resource are constants, and
then the scheduling on the basis of time window instead of
timeslot would not lose any optimality. After elastic time
windows are determined, it is easy to construct an elastic
time-expanded graph.

Iterative Min-Max (Max-Min) LP. Now the schedul-
ing can be solved using an iterative Min-Max LP [41] or
Max-Min LP [42]. Take the Min-Max for congestion as
an example. During the iterations, links are labeled as
“unmin” or “min”, wherein “min” means the congestion
of this link has been minimized and cannot be reduced by
any means.

Initially, it has no idea on the congestion of any link,
and all links are labeled as “unmin”. In each iteration,
it minimizes the maximum congestion of all unmin links
by solving a minimization problem. Then, the link with
maximum congestion is regarded as a “min” link, and it
would not put more traffic on this link in the following
iterations according to the requirement of min-max. The
iteration repeats until all links are minimized, i.e., labeled
with “min”.

Disjoint Paths to Reduce Complexity. In [42],
the authors further design a method to reduce the time
complexity by putting a limit on the number of usable
paths for each request. Previously, each request can use an
unlimited number of paths (a path is a series of network
links and storage nodes) to deliver its traffic. The key
here is how to select the K paths for each request. The
authors devise a k-disjoint shortest paths algorithm and
demonstrate that it can produce better results than k-
shortest paths.

5.3. BDT: Scheduling Multiple Requests with Unlimited
Storage [43]

In [43], the authors propose BDT, which formulates
the scheduling problem in a similar way to NetStitcher,
i.e., splitting into chunks and transmitting each chunk in-
dividually in a store-and-forward manner. BDT tries to
maximize the effective throughput of all successfully com-
pleted requests.

The authors design an algorithm, named HEU, to make
a scheduling decision for a new arriving request. Assume
a path r with hr hops (links) is a possible path for the re-
quest. It splits the transmission window (timeslots before
the deadline) into hr timepieces with an equal number of
timeslots. If every hop on the path has available resources
to transmit a chunk within its own timepiece, this path is
viewed as a feasible path.

For each chunk, HEU selects a shortest feasible path. If
one link on the path has multiple free timeslots within its
own timepiece, HEU selects the later timeslot with higher
probabilities for transmission. To some extent, HEU also
performs the scheduling policy of “As Late As Possible”.

Similar to DCRoute, it pulls traffic from future times-
lots back to the current timeslot if underutilized resources
are found. Note that HEU can pull back traffic if the link
is available because only a single link is involved under
SnF. DCRoute can pull back traffic only when all links of
the e2e path are available.

HEU is a heuristic algorithm. The authors conduct
experiments to compare it with RES, which solves the op-
timization problem straightforward for each new request.
HEU outperforms RES although HEU is a heuristic while
RES targets at the optimal solution. It is because RES
does not consider unknown future requests while HEU
saves resources for urgent future requests.

6. Scheduling to Minimize Transmission Cost

All previous schemes assume that the datacenter provider
has made its provisioning decision, i.e., the capacity of
each network link is fixed and ISPs are using a capacity-
based model. In other words, the datacenter would pay a
fixed charge according to the capacity it buys, no matter
how much traffic is transferred on the inter-WAN links.
During scheduling, the constraint is that the traffic on one
link cannot exceed its capacity, and the objective on effi-
ciency is equal to increase the utilization rates of links to
satisfy requests as much as possible.

On the other hand, there is the other charging model
for ISPs to charge datacenters, i.e., usage-based model,
wherein the transmission cost of one datacenter provider
is directly related to the traffic rate on inter-DC links, ei-
ther the maximum rate or the q-percentile rate. Under the
usage-based model, some DCs would like to minimize the
transmission cost incurred by inter-DC traffic requests as
much as possible.

In this section, we would review some schemes that
aim to minimize the transmission cost of inter-DC WANs.

16



Some schemes, such as Jetway, is for deadline-agnostic sce-
narios, wherein each request has a rate demand and wants
to maximize its allocated rate, similar to schemes in Sec-
tion 3. Other schemes, such as GRESE, Postcard and
TrafficShaper, focus on deadline-aware scenarios, wherein
each request wants to meet its deadline requirement, sim-
ilar to schemes in Section 4.

6.1. Jetway: Deadline-agnostic Requests [44]

Jetway is designed for scheduling of inter-DC video
flows, and each flow is specified with a flow rate require-
ment. The basic idea of Jetway is to accommodate more
flows using the resources that have been paid and buy
more resources only when necessary. The authors of [60]
also study the resource allocation problem for deadline-
agnostic flow requests, but they assume a usage-based
cost model, which means they can always choose available
paths with the least cost for flows. The problem formula-
tion is quite straightforward, and their main contribution
is on the decomposition of the original optimization prob-
lem to develop a distributed method.

Jetway solves the scheduling problem for each indepen-
dent timeslot by formulating two flow problems as follows.
In a timeslot t, the authors assume all historical informa-
tion is known, and they define the charging volume up
to the time interval (t − 1) on one link as the Already
Paid Portion of Traffic Volume. Jetway constructs a graph
where each inter-DC WAN link is with a capacity of its al-
ready paid portion volume. Obviously, Jetway would like
to accommodate inter-DC requests in this graph as much
as possible, which is a maximum concurrent flow problem.
After that, the second step is trying to minimize the ad-
ditional cost to accommodate all remaining demands. It
is exactly in the form of a minimum-cost multi-commodity
flow problem.

We note that Jetway tries to find the best solution for
the current timeslot based on the historical information
because the leaving and arriving of flow requests are un-
known for future timeslots. It only schedules flows in terms
of the spatial dimension.

6.2. GRESE: Partially Elastic Requests [45]

Similar to Jetway, GRESE is also based on the simple
idea that the “already paid” bandwidth should be used
with the highest efficiency and more bandwidth is bought
only when necessary. But GRESE deals with deadline-
aware elastic requests instead of flow requests.

The authors of [45] pinpoint that the assumption that
the data of one request can be sent at any rate may not
hold. For example, it is well known that the maximum
achievable throughput of a TCP connection has a ceiling
related to the RTT and the packet loss of its transmis-
sion path. Therefore, some requests are not “completely
elastic”, and each request should be specified with three
more parameters: a minimum rate Bmin, a maximum rate
Bmax, and a flex ∆ (maximum variation of rates in two
consecutive timeslots).

In [45], the authors design a scheduler, named GRESE,
to decide the sending rate in each timeslot for each “par-
tially elastic” request with the objectives of deadline-guaranteed
and cost minimization. They solve this problem using
some very simple heuristics.

In each timeslot, each request has a minimum send-
ing rate, which is the maximum between its Bmin and
the required smallest rate to complete before its deadline,
i.e., the remaining transfer size over the remaining time.
GRESE allocates to each request its minimum sending rate
in an order wherein the non-preemptable requests (whose
rate must be non-zero due to ∆) are satisfied first and
the remaining requests are sorted by multiple attributes
such as flex, deadline and remaining demand size. If the
resource is insufficient for this allocation, GRESE would
increase the link capacity by 1% and try again. If there is
excess capacity after the allocation, GRESE allocates more
resources to the requests with tight deadlines or large flex.

We can see that GRESE decides to buy more resources
only when it is necessary. Since ISPs usually charge DC
providers based on maximum bandwidth (or 95 percentile),
once GRESE decides to increase link capacity, the in-
creased capacity can be used till the end of one billing
period.

6.3. Postcard: SnF to Minimize Cost [46]

By enabling the SnF mechanism, Postcard can post-
pone some traffic to reduce the peak traffic of some links,
and thus it can further minimize the operation cost charged
by ISPs.

The authors also construct a time-expanded graph to
formulate and solve the cost minimization problem. In
Postcard, all nodes are duplicated one copy for each times-
lot, and there is no link within the same copy. Let in de-
note the node i in the timeslot n. A node can only be
connected with nodes in neighboring timeslots. If there
is a link from i to j (i 6= j) in the original network, there
would be a link from in to jn+1 (∀n) associated with a par-
ticular capacity limitation and a particular cost per traffic
unit. There is the other type of links, from in to in+1, rep-
resenting that traffic can be stored at node i in timeslot
n. Postcard associates these storage links with unlimited
capacity and zero cost.

We can see that the way to construct the graph in
Postcard is different from Amoeba and NetStitcher. It
is because they have different assumptions on their data
transportation. Postcard and BDT assume that data can
be transmitted only one hop in one timeslot. In other
words, when a node receives a piece of file, it must cache
this piece and wait until the next timeslot to send it out. In
contrast, NetStitcher and Amoeba allow packets traversing
multiple hops as a consecutive flow in a single timeslot if
no storage is required.

Then the cost minimization problem becomes a static
traffic allocation problem with only linear constraints on
the time-expanded graph, which can be solved by clas-

17



sic algorithms, e.g., subgradient projection methods and
interior-point methods.

6.4. TrafficShaper: Exploiting Percentile Charging [47] [61]

Exploiting the 95% percentile charging model to re-
duce cost has been studied in inter-domain traffic engineer-
ing for traditional ISP networks [62]. Under this charging
model, some (say 5%) timeslots with the heaviest load can
be viewed as “free” because they do not affect the cost of
this charging period. Therefore, we can set some times-
lots as “burstable” or “free” timeslots and move traffic to
these timeslots as much as possible as long as the capacity
constraints are not violated. TrafficShaper tries to use the
same idea in inter-DC WANs with the additional consider-
ation to guarantee successful completion of most requests.

Different from other schemes wherein one DC opera-
tor should pay for the inter-DC dedicated links or paths
between two sites, TrafficShaper assumes that the DC op-
erator pays for the uplink and downlink of every site under
a usage-based charging model.

Although the problem is formulated as a centralized op-
timization, the authors make efforts to design a distributed
system, which enables that one site can make its schedul-
ing decision only based on previous timeslots (temporal
decomposition) and local information (spatial decentral-
ization).

Temporal Decomposition. Scheduling decisions in
different timeslots are correlated due to the percentile func-
tion and the deadline requirements. Using Lyapunov op-
timization, the authors represent all capacity and dead-
line constraints by congestion of queues and transform the
objective function as a tradeoff between cost and dead-
line misses. Then the problem is decomposed into several
sequential subproblems, each of that is to be solved in a
single timeslot. In this way, at the beginning of each times-
lot, the decision process only needs to consider historical
information in previous timeslots.

Spatial Decentralization. The authors further pro-
pose a decentralized implementation, with which each site
can determine the rate of each transfer on its uplink and
downlink using its local information. The destination site
of one request would send its planned receiving rate to
the source site, and the source site chooses the minimum
of sending rate and receiving rate to send traffic for this
request. In this way, the time-complex centralized compu-
tation with global information is avoided.

7. Scheduling with Pricing

Some researchers noticed that scheduling schemes had
to incorporate proper pricing mechanisms to charge users
according to their requirements such as priority, dead-
line, and the size of demand. Otherwise, users always
have inclinations to submit inflated priorities and tight-
ened deadlines, and the performance of scheduling would
be degraded drastically due to the false information pro-
vided by users.

In Amoeba, the authors mentioned some simple princi-
ples of pricing models. For example, higher price should be
set for better service; charging for a request should be able
to reflect the pressure the request exerts to the network,
which might be evaluated by the average bandwidth re-
quirement instead of the volume. Obviously, it is far away
from enough. For example, transmitting a file in non-peak
hours should be less expensive than peak hours, so that
resources during non-peak hours can be utilized more and
the inter-DC WAN may get more revenue. In this exam-
ple, pricing models are used to encourage users to behave
properly to optimize a particular economic objective.

In this section, we would briefly summarize several
scheduling schemes with pricing mechanisms. Roughly
speaking, they formulate the scheduling problem as fol-
lows. Each request is specified with a valuation by the
user to reflect its importance. After the system receives
the request, it would compute a spatial-temporal schedul-
ing decision and also a price for the request. If the valua-
tion is also sent to the scheduling system as a willing-to-pay
price or a bidding price, the system can make an admission
control decision by comparing the computed price and the
willing-to-pay price. If the valuation should be kept by the
user as a secret, it can be viewed as an auction, wherein the
computed price is returned to the user and based on a com-
parison the user would make a decision, such as whether
to transmit or how much volume to transmit.

There might be two natural economic objectives when
it computes the scheduling and the price. A public data-
center provider may want to maximize its revenues from
users. At least it wants to distribute the cost it pays to
ISPs among users and make sure that the revenue is larger
than the cost. A private datacenter provider only provides
services for its own applications. Its objective can be mod-
eled as maximizing social welfare, which equals the total
valuation of accepted requests minus the ISP cost that the
datacenter provider should pay to complete transmission
of these requests. Furthermore, in [36], the authors ar-
gue that all DC providers will be driven to optimize social
welfare due to high competition in the market.

7.1. Shapley: Welfare Maximization and Shapley-based Charg-
ing [48]

Shapley value is an approach in the cooperative game
theory to allocate aggregated profit/cost generated by a
coalition to individuals in the coalition fairly and efficiently
[63]. The basic idea is to allocate profit in accordance with
the surplus contribution of each individual. It has been
proven that Shapley value is the only allocation approach
which achieves all the three nice properties, i.e., efficiency,
symmetry, and fairness [64].

In [48], the authors assume that the WAN is charged
by ISPs using a usage-based model. The cost should be
shared by all requests in the accounting period. They pro-
pose that the price of a request should be linear with its
Shapley value to reflect the cost it incurs to the WAN. The
linear coefficient, which is a parameter set by the WAN,

18



should be larger than 1 to guarantee budget balance. On
the other hand, it cannot be too large because the network
needs to accept as many requests as possible for more rev-
enue.

The authors state that its objective is to maximize so-
cial welfare. We notice that the authors argue that the
network always can buy more bandwidth as long as it is
willing to pay more cost. So they assume that the WAN
always has sufficient bandwidth on all links to satisfy all
requests. Under this assumption, there is no resource con-
tention, and welfare maximization is equal to accept every
request whose Shapley value is less than valuation.

Here we only introduce its online algorithm because
offline algorithms cannot be used in real networks. The
authors propose a two-step procedure as follows.

Traffic Scheduling. When a request arrives, the sys-
tem assumes the request is accepted and tries to find an
optimal schedule. Although it aims to maximize welfare,
since future requests are unknown, the authors just use
a very simple scheduling algorithm. In terms of the spa-
tial dimension, it assumes there is only one usable path
for each request. In terms of the temporal dimension, it
distributes the traffic of one request equally over the en-
tire transmission time window, arguing that this simple
smoothing can avoid high traffic peak. It replaces a dead-
line requirement with a bandwidth requirement, which
means the system is putting a more stringent requirement
for each request.

Price Computation. The price of a request should be
calculated from its offline Shapley value instead of online
Shapley value because the authors argue that the charge
to one request should not be affected by its arrival time. In
other words, the extra cost caused by this request must be
calculated under each of arrival sequences (permutations
of all requests), and the average of all these extra costs
would be used for charging.

The challenge is that future request arrivals are un-
known when this request is received. We know that the
online Shapley value can be easily computed by subtract-
ing the cost incurred by old requests from the total cost
incurred by this new request and all old requests together.
The authors propose two ways to estimate the offline Shap-
ley value from the online Shapley value. One is to produce
request arrivals based on the Monte Carlo simulation and
then calculate using all the produced request arrivals. The
other way is scaling the online Shapley value by a factor
calculated from the data of the previous accounting period.

7.2. Pretium: Pre-computing Link Prices of Each Times-
lot [36]

In Sigcomm 2016, researchers from Microsoft presented
Pretium, which also aims to maximize social welfare. At
the beginning of every time window (e.g., a day), based
on the requests and the corresponding scheduling in the
last time window, Pretium calculates the optimal prices
for every link/timeslot under the optimal scheduling to

maximize the social welfare of the previous time window.
These prices are stored in the system and will be used
to produce price quote for requests coming in this time
window.

Pretium assumes the per-byte value is fixed for one
request, which does not hold for transfers that are useless
until the whole transfer is completed. The authors state
that Pretium can be extended for non-linear utilities but
do not explain how to extend.

Let us denote the price to use a link e in a timeslot t
as Pe,t. Pretium works as follows.

Preliminary Scheduling and Price Quote Calcu-
lation. Since all Pe,t have been known, Pretium can easily
calculate the price of each usable path in each timeslot. In
the preliminary scheduling, Pretium always steers traffic
of one request to the minimum-price path/timeslot with
available bandwidth. In other words, it uses the minimum-
price path/timeslot until the path in the timeslot is satu-
rated, and then it starts to use the path/timeslot with the
next lower price. Therefore, the price quote is a piece-wise
linear function of the transmitted volume. The price quote
also includes a capacity bound, i.e., the maximum volume
that the network can accommodate for the request before
its deadline.

Demand Size by the User. Each user has a secret
per-byte valuation for its request. It would like to transfer
more bytes as long as the volume is less than the capacity
bound and the marginal price to transfer the byte, which
can be calculated from the price quote function, is less
than its per-byte valuation. The user notifies Pretium of
its decision on the data size to transfer.

Optimal Scheduling in Each Timeslot. The pre-
liminary scheduling only achieves approximate local opti-
mal for a single new request. At each timeslot, Pretium
would reschedule all requests together for global optimal
social welfare. There are two issues here. First, Pretium
does not know the values of requests, which is required
in calculating the achieved social welfare. Second, if the
ISP charges the datacenter provider based on usage, the
95th percentile usage-based charging would make the op-
timization problem NP-hard. For the first issue, Pretium
can have a rough estimation from its final transfer size and
the piece-wise linear price quote function. For the second
issue, the authors propose to approximate the 95 percentile
charges using a linear function and transform the original
NP-hard problem to a linear program. The linear program
has a lot of constraints, and sorting-network inequalities
are used by Pretium to reduce the number of constraints.

7.3. Uniform Price Auction: Value-based Allocation [49]

In [49], the authors propose a scheme which aims to
maximize revenue for the datacenter provider. Here, one
request is specified with its demand Di and its willing-to-
pay prices vi. The scheme allocates resources to requests

using the formula qi = (1 − p

vi
)Di wherein p is the price

charged for per unit of bandwidth.

19



It is a uniform price auction game [65], and the seller
(datacenter provider) can find the optimal price p to achieve
maximum revenue, p×

∑
i qi, through a simple computa-

tion.
Under this allocation scheme, if there are sufficient

resources for allocation, i.e., the capacity is larger than∑
i qi, the total allocated bandwidth would be 50% of the

aggregate demand from users, which means each user only
gets a half of its demand satisfied in average. Obviously,
it works only for monopolist datacenter providers, which
can set a very high price for its revenue maximization.

If there are insufficient resources for allocation accord-
ing to the formula, it means the maximum-revenue price
is too low and the seller must set a higher price to reduce
the allocation of each user. The best price in this case is
the market clearing price, which can allocate all resources
to users.

One desired property of this scheme is that the request
with a higher value will be allocated more resources. More-
over, the dominant strategy of each request is to submit its
valuation as its willing-to-pay price, which means truthful-
ness in bidding value.

It has two undesired properties. First, no request can
get its demand fully satisfied. Second, resources can be
wasted seriously because social welfare is not considered
at all.

Furthermore, this scheme works only for the allocation
of a single resource, e.g., a lot of requests are competing
for the resource of a single link. It should be extended for
scenarios with multiple resources to solve the real-world
inter-DC scheduling problem.

8. Scheduling of Inter-DC P2MP Requests

Point to Multi-Points (P2MP) transfer requests are
very popular in inter-DC WANs. For example, one DC op-
erator would like to make several copies at different sites
for one file or a dataset, i.e., geo-replication for perfor-
mance or fault tolerance.

Obviously, transforming a P2MP request into multi-
ple independent point-to-point transfers, i.e., sending the
data from the source to every destination directly, can
yield poor efficiency because the file may be transmitted
for multiple times on one link. Traditional IP layer mul-
ticast protocols are more efficient than multiple unicasts,
but they are with complex management cost and may not
be feasible across ISP networks. Researchers propose var-
ious centralized scheduling schemes for inter-DC WANs to
improve the efficiency of P2MP transfers.

The scheduling problem for P2MP requests can be sum-
marized as follows. Each request is specified with a source,
a set of destinations (instead of a single destination), and
a demand (either a rate demand or a transfer size with a
deadline). The data would be transmitted on forwarding
trees (instead of paths). The set of usable forwarding trees
can be given as an input, or it is needed to be found by

the scheduling systems. A scheduling decision includes a
set of selected forwarding trees and corresponding sending
rates on each selected tree in each timeslot.

In this section, we would review several P2MP schedul-
ing systems. Blossom and Calantha are designed for rate
requests (deadline-agnostic as in B4 and SWAN), and they
schedule multiple requests simultaneously in the spatial di-
mension. They take candidate forwarding trees as input,
and each forwarding tree consists of all destinations. Mul-
tiple trees are used to maximize the throughput of the
request. DCCast and QuickCast work in a FCFS manner,
which means they only schedule a single request at a time.
They aim to complete the request as soon as possible and
schedule the request in both spatial and temporal dimen-
sions. In order to avoid packet reordering, they only use a
single tree for one destination. But the destinations can be
partitioned to multiple groups, and each group is assigned
with an individual forwarding tree. Airlift is different from
these schemes. It exploits a feature of network coding and
transforms one P2MP request to multiple unicast requests
to find a final scheduling solution.

8.1. Blossom [50] and Calantha [66]: Max-Min Fair Multi-
Tree Multicast

Blossom aims to maximize network utilization while
maintaining max-min fairness in terms of satisfaction among
all P2MP transfers. It assumes the candidate trees for
every request have been known, then it is very easy to
formulate the optimization problem mathematically. But
solving the problem using standard LP solvers is time-
consuming. With the help of the variable-size increment
technique and the dual problem, the authors design an
algorithm to find an approximate solution in polynomial
time. The basic idea is that the dual to link capacity con-
straint ce is defined as link length de. Blossom gradually
allocates more traffic to the minimum spanning tree of each
request, and de is updated accordingly. The saturation of
a link can be tested by comparing de with 1/ce. Once a
P2MP request is saturated on all usable spanning trees, it
is excluded from later phases. The algorithm stops when
all requests are excluded.

Calantha proposes to reduce the computational com-
plexity of Blossom by using only “hop-constrained” for-
warding trees. It reduces the size of the set of candidate
trees for selection and makes sure that the maximum num-
ber of hops between the sender and any receiver cannot be
too large, which is beneficial to constrain the bandwidth
waste caused by deep trees. The idea of using only trees
of limited depth has also been exploited in other scenarios
such as [67]. Experiments show that it has been enough
to achieve good network efficiency with only 2-hop con-
strained trees or 3-hop constrained trees.

8.2. DCCast [51] and QuickCast [68]: Minimizing Com-
pletion Time

DCCast and QuickCast work in a FCFS manner, and
they aim to complete a request as soon as possible (transfer

20



performance) while using bandwidth as little as possible
(network efficiency) for completing the request. These two
objectives can be conflicting with each other. For example,
a longer path with a larger free capacity would result in
shorter completion time and more consumed bandwidth.
DCCast and QuickCast just try to make a trade-off be-
tween them using heuristics.

Determine a Single Forwarding Tree. DCCast
defines the link weight as the total load on a link, which
is the load of all existing requests and the new requests
that would be assigned to paths including this link. When
a P2MP transfer arrives, DCCast selects the minimum
weight Steiner Tree as its forwarding tree. An approximate
minimum weight Steiner Tree can be found by GreedyFLAC
at a quite fast rate. In order to complete the request as
soon as possible, the sending rate is set to be the minimum
available bandwidth of all links on the forwarding tree in
all closest timeslots before the request is completed.

By the definition of link weight, the selected tree can
avoid heaviest loaded links and longer paths. Further-
more, a transfer with a larger size tends to be assigned
to a tree with a smaller number of links, and a transfer
with a smaller size tends to use a tree with more residual
bandwidth.

The forwarding tree can be implemented using Group
Tables of SDN switches.

Partition Receivers to Accelerate. The comple-
tion time of a transfer is constrained by the bottleneck
link on the tree. For example, assume the link between a
receiver j and its parent node is heaviest loaded, then the
transfer must be slowed down to the rate allowed by this
bottleneck, thus all nodes would be affected because they
are on the same single forwarding tree.

Noticing this disadvantage, QuickCast [68] proposes to
group receivers into multiple subsets and each subset is
assigned to a separate forwarding tree. In this way, j and
j’s child nodes can use the same forwarding tree as before,
while other nodes can have a different tree without this
bottleneck and receive the data faster than in DCCast.
Then, the average completion time is reduced at a cost of
additional bandwidth overhead.

How to partition receivers is the key problem here.
QuickCast clusters receivers according to the distance be-
tween any two nodes, i.e., the hop number of the shortest
path between two receivers. This clustering process re-
peats until the number of groups is equal to the predefined
desired value. In this way, it ensures that the total number
of links in all forwarding trees is minimized, which helps
to reduce bandwidth consumption.

Increasing the number of groups would consume more
bandwidth, and it can even result in longer completion
time due to the resource contention among trees. Quick-
Cast chooses to partition receivers into at most two groups.
It compares the single-tree solution and the two-tree solu-
tion in terms of the total load of all links on the selected
forwarding trees. If the increasement of the total load
is less than a predefined threshold, the two-tree solution

would be accepted. Otherwise, the additional overhead is
too much and the single-tree solution should be used.

QuickCast also uses the minimum weight Steiner Tree
for each group. Since there can be resource contention
among groups, QuickCast has to take fairness among groups
into consideration when determining the sending rate of
each forwarding tree.

8.3. Airlift [52]: Multicast Using Network Coding

Airlift is designed to schedule flows of multiple multi-
party video conferences running on an inter-DC WAN.
These flows are with stringent delay constraints, and higher
bit rates are preferred. Therefore, Airlift aims to achieve
three objectives: satisfying delay constraint, maximizing
throughput (bit rate), and achieving fairness among con-
ferences.

In order to improve scalability, flows of conferences are
aggregated according to the source site and the set of des-
tination sites of each flow. Each aggregation is referred to
as a session.

The basic idea of Airlift is that a multicast session can
be transformed into multiple unicast conceptual flows and
then Airlift only needs to solve the scheduling problem for
these special unicast flows.

Conceptual Flows Based on Network Coding.
According to [69], if a source can send data at a rate x to
every destination independently, the rate x must be im-
plementable for all destinations using a multicast session
with network coding. Based on it, a multicast session (ag-
gregated from multiple conferences) can be transformed
to multiple unicast conceptual flows, wherein each flow
is from the source of the session to one destination of the
session, and these flows would not compete for bandwidth.
When a conceptual flow is scheduled, the bandwidth allo-
cated to other conceptual flows in the same session can
also be used by it. In other words, assume Airlift allocates
resources x to a multicast session, then every unicast con-
ceptual flow of this session can use all of x.

Exclude Paths with Longer Delay. Airlift assumes
that the delay of each link has been known, and an end-
to-end path delay is equal to the sum of delays of links on
the path. Therefore, all feasible paths for each conceptual
flow can be found using a depth-first search algorithm.

Now each conceptual flow has had a set of usable path.
The scheduling problem is similar to the problems in Sec-
tion 3, except that Airlift needs to revise capacity con-
straints. The formulated problem can be solved by stan-
dard LP solvers.

Transform the Scheduling Solution for the Ini-
tial Problem. The derived scheduling decision for con-
ceptual flows should be transformed back into a feasible
scheduling decision for original multicast sessions. Let us
illustrate using a simple example. Assume a session S1 is
from the site D1 to D2 and D3, so there are two conceptual
flows f1,2 and f1,3. Assume the derived scheduling is as
follows: f1,2 is sending at a rate of 10 on the path (1, 4, 2),

21



and f1,3 is sending at a rate of 6 on the path (1, 4, 3) and
a rate of 4 on the path (1, 4, 5, 3). Then the final multicast
tree should be: sending 10 on the link (1, 4), and the site
D4 would replicate two copies, wherein one copy would be
sent to D2 and the other copy sent to D3 and D5 with a
split ratio (4 : 6). D5 then forwards the ratio it receives
to D3.

8.4. AGE [53]: P2MP Bulk Transfers

In [53], the authors also study the P2MP transfer prob-
lem, but the scenario they concern is different from the
P2MP schemes mentioned above. First, they focus on
bulk transfers instead of streaming transfers. A streaming
transfer requires that the same rate should be allocated to
the transfer over all links of its forwarding tree to reach all
the destinations at the same time at any timeslot. A bulk
transfer just requires the file can be transferred to the des-
tinations before the specified deadline. Therefore, a des-
tination node that has completed the transfer can serve
as a source and deliver the file to uncompleted destina-
tions. The problem formulated by them can be viewed as
finding an overlay forwarding tree with store-and-forward
enabled. Second, their goal is to maximize the number
of destinations that can receive the file successfully before
the specified deadline. In the paper, the authors just try
to find the optimal scheduling decision for a single trans-
fer request instead of optimizing the overall performance
of multiple requests, therefore there is no need to consider
the resource contention among transfers and the solution
can be figured out by solving the corresponding MIP prob-
lem directly.

9. Cross-Layer Scheduling: Optical Layer and IP
Layer

Schemes discussed before all assume a given and fixed
network-layer topology. In recent years, if a network-layer
WAN is built on an intelligent optical layer, the network-
layer topology can be constructed dynamically by recon-
figuring optical devices [70][71][72][73]. Therefore we can
further improve the performance of inter-DC WANs by
jointly optimizing both optical layer and network layer.

9.1. Basics of Reconfigurable Optical Layer

One inter-DC WAN built on an intelligent optical layer
consists of network routers, optical switches called Recon-
figurable Optical Add-Drop Multiplexer (ROADMs), re-
generators, and fibers. A WAN link is an optical circuit
with a specific wavelength, which is established by prop-
erly configuring the wavelength switching in ROAMs along
the link.

Modern ROADMs can be configured remotely in hun-
dreds of milliseconds, and the time can be reduced to tens
of milliseconds and even lower in the future. Enabling by
today’s ROADM technology, we can change how routers

are connected for particular goals via reconfiguring how
wavelengths are switched in ROADMs.

If the distance between two ROAMs is too long, a
regenerator is necessary to regenerate the optical signal
because a wavelength normally has limited transmission
range which is called optical reach. Optical-network providers
usually pre-deploy some regenerators at certain concentra-
tion sites to enable transmission between any two ROADMs.
The number and locations of pre-deployed regenerators are
important constraints during reconfiguring topologies.

9.2. OWAN [54]: Dynamic Network Layer Topology

In Sigcomm 2016, some researchers from academia pro-
posed OWAN, a centralized system to optimize the perfor-
mance of one inter-DC WAN and transfers on it by jointly
controlling the optical circuit configurations (OC) and the
routing configuration (RC). OC is configured on optical
devices and it determines network topology. RC includes
routing paths and sending rates and it should be installed
on routers and end hosts.

OWAN runs its reconfiguration algorithm periodically
in each timeslot. Obviously, the optimization problem it
formulates is with more decision variables and constraints
than the cases with fixed topologies, and some constraints
are integral. In order to reduce time complexity, the au-
thors design a greedy algorithm with a reduced search
space.

OWAN exploits the Simulated Annealing algorithm to
greedily search for the approximately optimal topology
that can produce the highest total throughput. The sim-
ulated annealing is an iterative algorithm. It starts from
the current topology. At each iteration, it constructs a
neighbor state (a new topology) and decides whether to
transit to the new state according to the throughput of
the new topology. We describe the algorithm in detail as
follows.

Constructing a Neighbor State. In each iteration,
OWAN randomly selects two links, e.g., (u, v) and (p, q),
and changes one wavelength for (u, v) and (p, q) to (u, p)
and (v, q). Let θ be the capacity of one wavelength. The
above change means the capacity of each old link is reduced
by θ and each new link has its capacity increased by θ. In
this way, the ingress and egress capacity of each router
is kept unchanged, which is a constraint related to router
performance.

The simulated annealing algorithm only searches neigh-
bor states, so the search space is significantly reduced.
Moreover, by starting the first iteration from the current
state, the algorithm tends to find a target topology that is
close to the current topology, which helps OWAN minimize
the disturbance caused by configuration updates across
timeslots.

Computing Throughput of the New State. OWAN
uses the maximum throughput that can be achieved by the
given state as the energy of the state, which is a key fac-
tor to decide whether to transit to the state. Therefore,

22



it is necessary to compute the maximum throughput of a
network layer topology.

It should be noticed that not all topologies can be im-
plemented due to the constraints of the optical layer such
as fibers, wavelengths and regenerators. So the first step is
to find an optical layer configuration (OC) that can imple-
ment the given state. OWAN designs a greedy algorithm
to search for the OC. It is possible that the greedy algo-
rithm finds that the capacity of one or more links in the
given topology cannot be satisfied. In that case, the link
capacity has to be decreased to form an implementable
topology.

In the second step, OWAN schedules transfers to op-
timize their performance and computes the correspond-
ing network throughput under such scheduling. It is the
traditional scheduling problem in the schemes with fixed
topologies, which is known to be hard. OWAN uses heuris-
tics to solve it. Roughly speaking, it prefers the shortest
path even for different transfers, which helps in achieving a
larger throughput. For transfers whose shortest paths are
with the same length, it uses classic scheduling policies
like shortest job first (SJF), which helps in minimizing the
average completion time, or earliest deadline first (EDF),
which helps in completing transfers before deadlines as
much as possible.

Transition to a New State. Simulated Annealing
algorithm has two basic concepts, i.e., energy and tem-
perature. In OWAN, the energy of a state is defined as
the maximum achieved throughput of the state. The ini-
tial temperature is set to be the initial energy, and the
temperature is decreased by a factor of α at each itera-
tion.

OWAN decides to transit to a new state with a prob-
abilistic function P . If the new state is with a higher en-
ergy, P = 1; otherwise, P = e(ecurrent−eneighbor)/T , where
ecurrent and eneighbor are the energy of the current state
and the new state respectively.

Stopping the Search. The algorithm stops when
the temperature is less than a threshold ε. α and ε are
parameters to control the number of iterations.

10. Practical Issues

Whether a proposed scheme can achieve the best re-
sult depends on many factors. For example, whether the
problem is properly formulated to reflect the intentions of
datacenter operators and users correctly and model the
network environment comprehensively? Whether the op-
timization problem can be solved online or how far the
solution given by greedy algorithms is from global opti-
mal? Even the solution is optimal, the final achieved re-
sult still depends on many practical issues, e.g., hardware
capability and imperfect knowledge.

In this section, we would summarize some practical
challenges and briefly describe how current schemes deal
with them. We can see that most solutions in current

schemes are intuitive. Researchers can improve the schedul-
ing performance by studying these issues more deeply in
the future.

10.1. Time-Complexity and Scalability

In real networks, the scheduling system should run on-
line, which means it should be able to find the desired
scheduling solution within a short time. However, most
mathematical problems formulated are very complicated
with a lot of constraints and decision variables, even NP-
hard. Therefore researchers make a lot of efforts to reduce
the time-complexity of algorithms. We summarize their
ideas as follows.

Well-known LPs. A lot of schemes formulate linear
programs, such as multi-commodity flow problem, min-
cost flow problem, and packing-covering problem. These
problems are well-known, and researchers have proposed
many approximate algorithms for them. Some of them
even have standard solvers. For example, the problem of
maximizing throughput with fairness in mind has been
studied in [74] and [75]. It is worthwhile to study whether
their algorithms can be exploited to solve the problems
formulated by B4 and SWAN.

It is reasonable to conjecture that approximate algo-
rithms can work well if the number of flows or requests
is not very large or the system works in a FCFS manner.
Otherwise, the time-complexity can still be a problem and
it is needed to analyze in more detail case by case.

Greedy Algorithms and Heuristics. Some schemes
depend on greedy algorithms or heuristics instead of for-
mulating mathematic problems. For example, B4 uses a
progressive water-filling algorithm to push traffic to all us-
able paths as much as possible. DCRoute schedules the
arriving request to timeslots as late as possible. Since the
schemes cannot have perfect information about future re-
quests, some experiments demonstrate that these greedy
algorithms, if well designed, can outperform the optimal
solution derived by solving optimization problems straight-
forward.

Some schemes depend on heuristics to reduce complex-
ity but still need to solve some LPs. For example, Amoeba
uses some heuristics to select some requests to resched-
ule instead of rescheduling all requests. Then it needs to
solve a maximization problem to find a scheduling decision
for these selected requests. In this way, Amoeba tries to
achieve a tradeoff between optimality and time-complexity.

Aggregation or Selection. Schemes can reduce the
number of decision variables by aggregation or selection.
Both BwE and SWAN aggregate flows at the site/cluster
level and solve their scheduling problems for flowgroups.
Since the number of flowgroups is limited, we do not need
to worry about time-complexity too much. Furthermore,
BwE only enforces 10% of the flows but these flows can
account for 94% of the traffic. Experiments show that we
can focus only on the subset of flows that contribute most
to link utilizations and congestions.

23



10.2. Imperfect Knowledge and Unexpected Failures

In [43], their experiments show that a heuristic out-
performs the algorithm that solves the optimization prob-
lem straightforward because the heuristic greedily saves re-
sources for future requests while the optimization problem
cannot handle unknown future requests. It demonstrates
that we must pay attention to the influence of imperfect
knowledge and unexpected failures.

High-priority Traffic. All schemes should deal with
dynamic network condition. Bulk transfers are using the
left-over resource of high-priority traffic flows. Since the
volume of high-priority traffic varies, the resource that can
be used by bulk transfers is also changing. For exam-
ple, Netsticher uses the Sparse Periodic Auto-Regression
(SPAR) estimator to derive a prediction for the next 24
hours from historical information collected by bandwidth
monitoring tools. Fortunately, NetStitcher finds that mea-
surements show its environment is with predictable peri-
odic patterns. Tempus and Amoeba also predict high-
priority traffic demand from historical usage.

Demand Estimation. The spatial schemes to sched-
ule flowgroups need to estimate the demand of each flow-
group in the next timeslot. Roughly speaking, they mea-
sure the demand of each flowgroup continuously, and so
they can estimate future demand from usage history. For
example, BwE empirically finds that Demand = max
(max∆t(usage) × scale,min demand) with ∆t = 120s,
scale = 1.1 and min demand = 10Mbps works well for
user-fgs for Google’s network applications.

Untrust Users. The temporal schemes to schedule
transfers generally ask users to specify the detailed infor-
mation on their requests. There is no estimation error, but
the scheme should ensure that users have no inclination to
overstate or understate their demands. For example, in
the Shapley scheme, the system runs its algorithm with
different deadlines earlier than the deadline provided by
the user, and it chooses the deadline with which the re-
quest can be accepted and also yield the smallest charge
to the user. The traffic schedule and auction price are
derived from the chosen deadline instead of the deadline
given by the user. In this way, it brings the lowest price
and users have no incentive to bid an earlier deadline.

Future Requests. The other issue of online temporal
scheduling systems is that they have no idea about re-
quest arrivals in future timeslots. Some schemes, such as
Amoeba, just work in the FCFS manner, wherein a new
request can only use the resource left by old requests and
the new quest would be rejected if the left resource is in-
sufficient. These schemes do not provide fairness among
request arriving at different timeslots, and they also cannot
achieve global optimal performance. Other schemes con-
sider that all requests should be able to receive the same
service quality no matter when they come. For example, in
Tempus, future network capacity is systematically under-
allocated to leave room for future requests. The room it
leaves is larger for far future than near future timeslots.

It makes that all capacity in the current timeslot can be
fully used by existing requests, and the room in far future
timeslots would be used gradually as the time moves.

Deal with Unexpected Failures. There is no way
to avoid unexpected network failures. All schemes must
define how to react to failures. Many schemes just pro-
pose to recompute their scheduling solutions. For schemes
with admission control, it is possible that some accepted
transfers cannot be completed successfully due to failed
nodes or links, so they must decide which requests can be
rejected. For example, Amoeba removes all the requests
on the failed link and runs its algorithm to decide whether
to admit the requests one by one according to their ar-
rival times. NetStitcher is more complex when failures
occur because of in-network storage. NetStitcher assigns
a new demand (equals to the demand not delivered yet)
at the source and assigns a new demand (equals to the
volume it currently stores) at each intermediate storage
node. Then NetStitcher needs to solve a multiple source
maximum flow problem. Furthermore, after most of the
file is received, NetStitcher asks some storage nodes to
keep “inactive” replicas of already forwarded pieces. Once
an unexpected failure occurs and the transmission of last
pieces is affected, the receiver can get subpieces simulta-
neously from the source and the storage nodes. In this
way, it avoids performance degradation caused by the last
delayed pieces.

Deal with Imperfect Knowledge. Besides running
the scheduling algorithm with updated information suf-
ficiently frequently, schemes also develop different simple
ways to mitigate the waste caused by imperfect knowledge
and improve network utilization. For example, BwE es-
timates an upper level demand by aggregating its lower
level demands, ignoring the benefit brought by statistical
multiplexing of burst flows. Thus it multiplies the allo-
cated bandwidth by a burstiness factor (≥ 1) before redis-
tributing the resource to lower level flows. In Pretium, the
link prices in each timeslot are determined using historical
data. Obviously, the prices may not be optimal. Pretium
proposes short-term adjustments, e.g., increasing the price
of a link when the link is heavily loaded. After admitting
a new request, Pretium doubles the prices for links whose
utilizations are more than 80%. Amoeba detects if there is
unallocated bandwidth at the beginning of each timeslot
and pulls traffic from the future timeslots if spare resources
are found.

10.3. Enforcement of Scheduling

After the optimal scheduling solution is computed, the
solution should be enforced in the WAN. In most schemes,
the scheduling solution means a set of usable routing paths
and the sending rate on each path for each transfer or
traffic flow in each timeslot. Enforcement is not easy under
the current network model. For example, Amazon AWS
plans to allocate a particular data rate to a user class. It
implements a rate limiting mechanism, but a measurement
study shows the throughput varies a lot in different time

24



periods. We summarize some ways proposed for scheduling
enforcement in this subsection.

Enforcement of Priority. The traffic flows of inter-
active services should be specified with high priority and
sent out as soon as possible. Both SWAN and BwE pro-
pose to ask hosts to tag data packets with DSCP bits to
indicate the priorities of data packets. In networking de-
vices, priority queues should be configured to accelerate
the processing of packets with high priority.

Enforcement of Sending Rate. The rate limiting
can be enforced on hosts/supervisors or on networking de-
vices. Roughly speaking, host-based enforcement is pre-
ferred because it is considered to be more scalable than
network-based enforcement. For example, SWAN, BwE
and Amoeba exploit token bucket or Hierarchical Token
Bucket (HTB) to enforce rate limiting on hosts. By mod-
ifying Linux networking stack, each outgoing packet is in-
tercepted and marked using the nfmark field of sk buff to
uniquely identify its owner (task, service or user) for rate
limiting. By experiments, Amoeba states it performs accu-
rate real-time enforcement, and the difference between the
scheduling target and the actual throughput is less than
5% for more than 95% of requests.

However, host-based rate limiting requires full control
of end hosts. If source hosts are not under the control of
the datacenter operator, switches must be able to detect
services that are sending more traffic than allocated from
traffic logs. After detection, BwE proposes to notify the
owners of the service and re-mark the DSCP bits of excess
packets to be the lowest priority to avoid the greedy service
using resources allocated to other services.

Enforcement of Routing. The basic ideas to enforce
routing are overlay tunnels and source routing, although
the implementation details might be different. SWAN
pre-installs tunnels, i.e., label-based forwarding rules, on
OpenFlow switches. Each data packet is assigned with
a label (using VLAN ID) at its source switch, and the
label implies a set of tunnels and traffic splitting ratios
among these tunnels. Remaining switches just conduct
label-based forwarding. B4 works in a similar way to
SWAN, except it uses IP-in-IP tunnels. Amoeba imple-
ments the routing by explicit path control using Xpath
[76]. Each desired path is associated with an IP address,
and it is installed in IP LPM (Longest Prefix Match) tables
of switches. Then Amoeba leverages the NAT technology
to translate the original destination IP address into the
desired path ID according to the scheduling decision.

Enforcement of Traffic Splitting. Most schemes
allow multipath routing. Among them, some schemes de-
termine the sending rate on each path, while others give
as the result the total rate on all paths and a splitting
ratio among these paths. In the latter case, it needs only
one rate limiting for a single service and the split ratio can
be implemented on ingress switches, while the former case
needs to conduct rate limiting on each individual path for
the service.

Group tables in the OpenFlow pipeline can be used

to implement splitting. When it is not supported by the
hardware, SWAN proposes to split IP addresses into mul-
tiple groups to approximate the desired split. B4 notices
that hardware switches may not be able to support any
granularity splitting. For example, if the hardware sup-
ports splitting at a granularity of 0.5, then a desired ratio
(10 : 25/3 : 5/3) has to be approximated to (0.5 : 0.5 : 0).
Such approximation may result that the achieved network
efficiency is worse than expected. It seems BwE can take
the approximated splitting ratio as input and tune the
sending rate of each service to improve the result achieved
by B4.

10.4. Updating Configurations

Most schemes need to update their scheduling decisions
periodically. It is well known that there are some impor-
tant issues during updating network configurations and we
must pay special attention to them. These issues become
more important due to the high frequency of updating. It
is not easy to ensure that the network can maintain high
utilization during updates. In fact, although SWAN in-
corporates a lot of mechanisms to deal with issues during
updates, it still finds that an update frequency of 10 (100)
minutes reduces throughput by 5% (30%).

Minimizing Disturbance of Updating. To make
schemes practical in real-world networks, all of the pre-
viously promised allocations should be retained in future
timeslots as much as possible. This is to reduce the cost of
updating network configurations and avoid performance
variance due to path changes across timeslots. Tempus
achieves this property by exploiting the iterative algorithm,
i.e., Young’s method. Amoeba achieves this property by
first computing whether new requests can be accommo-
dated without changing the bandwidth schedules of exist-
ing requests. Even if the answer is no, Amoeba only selects
a subset of requests for rescheduling using heuristics.

Forwarding Table Limitation. Switches can only
support a limited number of rules. It means at least two is-
sues. First, we must constrain the number of usable paths
(tunnels) for each flow or request. Most schemes do not
consider this limitation, therefore it is possible that their
solutions are not implementable. SWAN states that set-
ting the number of usable paths as the number of priority
classes, i.e., 3, has been enough to fully use the network
capacity in its network environment. Therefore, SWAN
proposes the following procedure. First, it runs the algo-
rithm on all usable paths to derive a scheduling decision.
Second, it selects the smallest latency path, after that it re-
peats to select the remaining path that carries most traffic
as long as the rule limitation is not violated. Third, it re-
runs its scheduling algorithm on the selected paths. Then
the final solution is both implementable and efficient.

Second, in order to avoid packet loss during updating,
new forwarding rules must be added before the old rules
are deleted. It also puts pressure on the size of switch ta-
bles. SWAN proposes that some rule capacity should be

25



left for new rules, and it also designs an algorithm to de-
termine an implementable update sequence of rules. More
rule space is left, the smaller number of steps are needed
to complete updating.

Data Plane Capacity Limitation. Consider the
scenario that all links are fully used. In this case, it is
impossible to move traffic from one path to a new path
without congestion. Therefore, SWAN proposes to leave
about 10% of capacity unused at each link to accommo-
date moving traffic. Even with reserved capacity, it is still
needed to design an algorithm to find a proper update
sequence to realize a congestion-free update.

Dependencies of Configuration Operations. We
have noticed that the sequence of updates should be de-
signed to avoid transient overloads during changes. The
other issue in determining the sequence is the dependency
of operations. For example, B4 must configure the new
path before it moves traffic to the new path. Similarly, it
must move all traffic to the new paths before it removes
the old paths from switches. In OWAN, a routing path
cannot be used until the optical circuits for all links on
the path have been configured. In summary, we should is-
sue the operation after all operations it depends have been
completed. Dionysus [77] allows operators to build a de-
pendency graph and produce a proper update sequence.
But it cannot handle cross-layer updates. OWAN extends
Dionysus to represent dependencies of elements in differ-
ent layers by introducing circuit nodes into its dependency
graph.

10.5. General Challenges in SDN

Most schemes are using the SDN paradigm, therefore
they can enjoy the benefits of SDN. On the other hand,
they are also forced to solve the challenges brought by
SDN, such as the coordination of states across distributed
controllers, dependencies of multiple operations and fail-
ures of operations.

11. Discussions and Open Issues

Although quite a few resource scheduling schemes for
data transfers in inter-DC WANs have been proposed as in-
troduced in this article, the problem still remains an issue
and far from being well solved. As datacenter technolo-
gies evolve and geographically distributed datacenters are
more and more widely deployed, further research on the
scheduling of inter-DC networking resources is necessary
and valuable. In this section, we would like to highlight
some open issues and future directions.

1) measurement study to improve understanding and
prediction. Efficiently scheduling the inter-DC networking
resources requires a good understanding of traffic charac-
teristics on inter-DC WANs, but we only see very few mea-
surement results on it. For example, knowing more about
the applications that generate inter-DC traffic flows and
their performance requirements can help us formulate the

scheduling problem, especially the scheduling objective,
more reasonably. Moreover, when computing the schedul-
ing decision, some schemes need to predict the amount of
available resources and arriving requests in future times-
lots. Research works on measurement and analysis of
inter-DC traffic flows are beneficial for us to develop ad-
vanced prediction algorithms.

2) nonconventional approaches to computing optimal
solutions. As we described in Section 10, most mathe-
matical problems formulated are very complicated with a
lot of constraints and decision variables. Solving these
optimization problems using conventional approaches is
time-consuming, and using heuristics to derive approxi-
mate solutions cannot ensure optimality. In the surveyed
articles, we do not see any efforts to compute optimal so-
lutions using nonconventional approaches, such as evolu-
tionary computation and machine learning. Evolutionary
computation has been used in many cloud task scheduling
schemes [24], and machine learning techniques have also
been used to solve some types of optimization problems
efficiently [78] [79]. Machine learning may also be used
to learn scheduling objectives for allocating inter-DC net-
working resources.

3) interference between transport protocols and central-
ized scheduling decisions. As we know, transport layer
protocols such as TCP are in fact completing the task
of distributed resource allocation. It suggests the possi-
bility that a traffic flow might not be able to really ac-
quire the resources assigned by scheduling decisions. In
addition, if the resource share assigned to a traffic flow
varies a lot across two consecutive timeslots, the through-
put of TCP connection might degrade unexpectedly due
to the slow start phase and the AIMD algorithm of TCP.
A lot of transport layer protocols have been proposed for
intra-datacenter communication based on features of intra-
datacenter topologies and traffic characteristics, and it is
interesting to conduct a study on the influence of vari-
ous centralized scheduling decisions on the throughput of
transport layer traffic flows.

4) dynamic pricing strategies for inter-DC networking
resources. A carefully designed dynamic pricing strategy
can be an effective way to encourage tenants to use inter-
DC networking resources efficiently. But pricing resources
is always a hard problem. Particularly, it is very difficult
to model user behaviors, e.g., how they react to different
prices? how much risk they are willing to take? The pric-
ing scheme proposed in [48] is assuming the players are
playing a cooperative game and they just aim to recover
the total cost. In [36], the prices are pre-computed using
historical data. It is interesting to design pricing strategies
wherein usage prices are dynamically set by pricing agents
to achieve particular objectives.

12. Conclusion

In recent years, as geographically distributed datacen-
ters are more and more widely deployed, how to efficiently

26



utilize networking resources of inter-DC WANs and pro-
vide better performance for data transfers deserves sig-
nificant attention. Researchers from both industry and
academia have proposed various resource scheduling schemes
to solve this problem. In this article, we first introduce how
existing schemes understand and formulate the scheduling
problem for data transfers in inter-DC WANs, e.g., the
scheduling objectives, scheduling dimensions and schedul-
ing policies. Then we introduce each representative scheme,
mainly focusing on how it solves the optimization problem
with a lot of decision variables and constraints or how it
finds reasonable heuristics to design its scheduling algo-
rithm. Finally, we further examine the practical challenges
in developing real-world scheduling systems and point out
some open issues and future directions. Although most
scheduling schemes share the same basic idea, which is
to exploit the elasticity of transfer requests in inter-DC
WANs and the optimality enabled by a centralized archi-
tecture, these schemes are developed for different scenar-
ios (different network models and business objectives) and
the ways in which they make their algorithms to be able
to work in an online fashion can be very different.

In the real world, we can see most inter-DC WANs are
still using traditional traffic engineering techniques, and
most schemes reviewed in this article have not been de-
ployed in any inter-DC WAN. It indicates that more re-
search efforts are necessary and valuable for the scheduling
problem. We hope this article can provide some help for
research developments in this important field.

Acknowledgement

The authors thank the editors and anonymous review-
ers for taking time to review this paper and for their sug-
gestions that helped improve this paper. This work was
supported in part by the National Key Research and De-
velopment Program of China under Grant 2016YFB0801302
and in part by the National Natural Science Foundation
of China under Grant 61202356.

References

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Pa-
tel, “The cost of a cloud: Research problems in data
center networks,” SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 1, pp. 68–73, Dec. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1496091.1496103

[2] B. Wang, Z. Qi, R. Ma, H. Guan, and A. V. Vasilakos, “A survey
on data center networking for cloud computing,” Computer
Networks, vol. 91, no. C, pp. 528–547, Nov. 2015. [Online].
Available: http://dx.doi.org/10.1016/j.comnet.2015.08.040

[3] T. Chen, X. Gao, and G. Chen, “The features, hardware, and
architectures of data center networks,” Journal of Parallel and
Distributed Computing, vol. 96, no. C, pp. 45–74, Oct. 2016.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2016.05.009

[4] J. Moura and D. Hutchison, “Review and analysis of network-
ing challenges in cloud computing,” Journal of Network and
Computer Applications, vol. 60, pp. 113 – 129, 2016.

[5] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data cen-
ter networking (DCN): Infrastructure and operations,” IEEE
Communications Surveys Tutorials, vol. 19, no. 1, pp. 640–656,
Firstquarter 2017.

[6] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. V. Vasi-
lakos, “Survey on routing in data centers: insights and future
directions,” IEEE Network, vol. 25, no. 4, pp. 6–10, July 2011.

[7] E. Baccour, S. Foufou, R. Hamila, and M. Hamdi, “A survey of
wireless data center networks,” in 2015 49th Annual Conference
on Information Sciences and Systems (CISS), March 2015, pp.
1–6.

[8] C. Kachris and I. Tomkos, “A survey on optical interconnects
for data centers,” IEEE Communications Surveys Tutorials,
vol. 14, no. 4, pp. 1021–1036, Fourth 2012.

[9] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville,
M. Podlesny, M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data
center network virtualization: A survey,” IEEE Communica-
tions Surveys Tutorials, vol. 15, no. 2, pp. 909–928, Second
2013.

[10] I. Pietri and R. Sakellariou, “Mapping virtual machines onto
physical machines in cloud computing: A survey,” ACM
Comput. Surv., vol. 49, no. 3, pp. 49:1–49:30, Oct. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2983575

[11] A. Hammadi and L. Mhamdi, “A survey on architectures and
energy efficiency in data center networks,” Computer Commu-
nications, vol. 40, pp. 1 – 21, 2014.

[12] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy con-
sumption modeling: A survey,” IEEE Communications Surveys
Tutorials, vol. 18, no. 1, pp. 732–794, Firstquarter 2016.

[13] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez,
V. Wijaysekara, R. Irfan, S. Shrestha, D. Dwivedy, M. Ali,
U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, “A taxonomy
and survey on green data center networks,” Future Generation
Computer Systems, vol. 36, pp. 189 – 208, 2014.

[14] B. Dai, G. Xu, B. Huang, P. Qin, and Y. Xu, “Enabling net-
work innovation in data center networks with software defined
networking: A survey,” Journal of Network and Computer Ap-
plications, vol. 94, pp. 33 – 49, 2017.

[15] J. Son and R. Buyya, “A taxonomy of software-defined
networking (SDN)-enabled cloud computing,” ACM Computing
Surveys, vol. 51, no. 3, pp. 59:1–59:36, May 2018. [Online].
Available: http://doi.acm.org/10.1145/3190617

[16] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. S.
Netto, A. N. Toosi, M. A. Rodriguez, I. M. Llorente, S. D. C. D.
Vimercati, P. Samarati, D. Milojicic, C. Varela, R. Bahsoon,
M. D. D. Assuncao, O. Rana, W. Zhou, H. Jin, W. Gentzsch,
A. Y. Zomaya, and H. Shen, “A manifesto for future generation
cloud computing: Research directions for the next decade,”
ACM Computing Surveys, vol. 51, no. 5, pp. 105:1–105:38, Nov.
2018. [Online]. Available: http://doi.acm.org/10.1145/3241737

[17] B. Jennings and R. Stadler, “Resource management in clouds:
Survey and research challenges,” Journal of Network and
Systems Management, vol. 23, no. 3, pp. 567–619, Jul.
2015. [Online]. Available: http://dx.doi.org/10.1007/s10922-
014-9307-7

[18] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng,
and R. Ranjan, “A taxonomy and survey of cloud resource
orchestration techniques,” ACM Comput. Surv., vol. 50,
no. 2, pp. 26:1–26:41, May 2017. [Online]. Available:
http://doi.acm.org/10.1145/3054177

[19] S. Singh and I. Chana, “A survey on resource scheduling in cloud
computing: Issues and challenges,” Journal of Grid Computing,
vol. 14, no. 2, pp. 217–264, 2016.

[20] A. Thakur and M. S. Goraya, “A taxonomic survey on load
balancing in cloud,” Journal of Network and Computer Appli-
cations, vol. 98, pp. 43 – 57, 2017.

[21] A. S. Milani and N. J. Navimipour, “Load balancing mecha-
nisms and techniques in the cloud environments: Systematic
literature review and future trends,” Journal of Network and
Computer Applications, vol. 71, pp. 86 – 98, 2016.

27



[22] F. P. Tso, S. Jouet, and D. P. Pezaros, “Network and server
resource management strategies for data centre infrastructures:
A survey,” Computer Networks, vol. 106, pp. 209–225, 2016.

[23] P. Poullie, T. Bocek, and B. Stiller, “A survey of the state-of-
the-art in fair multi-resource allocations for data centers,” IEEE
Transactions on Network and Service Management, vol. 15,
no. 1, pp. 169–183, March 2018.

[24] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung,
and Y. Li, “Cloud computing resource scheduling and a survey
of its evolutionary approaches,” ACM Computing Surveys,
vol. 47, no. 4, pp. 63:1–63:33, Jul. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2788397

[25] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Re-
source management in cloud networking using economic analysis
and pricing models: A survey,” IEEE Communications Surveys
Tutorials, vol. 19, no. 2, pp. 954–1001, Secondquarter 2017.

[26] J. Zhang, F. Ren, and C. Lin, “Survey on transport control in
data center networks,” IEEE Network, vol. 27, no. 4, pp. 22–26,
July 2013.

[27] M. Noormohammadpour and C. S. Raghavendra, “Datacenter
traffic control: Understanding techniques and tradeoffs,” IEEE
Communications Surveys Tutorials, vol. 20, no. 2, pp. 1492–
1525, Secondquarter 2018.

[28] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu,
“Load balancing in data center networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 20, no. 3, pp. 2324–
2352, thirdquarter 2018.

[29] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster frameworks
for efficient scheduling and resource allocation in data center
networks: A survey,” IEEE Communications Surveys Tutorials,
vol. 20, no. 4, pp. 3560–3580, Fourthquarter 2018.

[30] S. Wang, J. Zhang, T. Huang, J. Liu, T. Pan, and Y. Liu, “A
survey of coflow scheduling schemes for data center networks,”
IEEE Communications Magazine, vol. 56, no. 6, pp. 179–185,
June 2018.

[31] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang,
H. Guan, and M. Zhang, “Guaranteeing deadlines for inter-
data center transfers,” IEEE/ACM Transactions on Network-
ing, vol. 25, no. 1, pp. 579–595, Feb 2017.

[32] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization
with software-driven WAN,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 15–26. [Online].
Available: http://doi.acm.org/10.1145/2486001.2486012

[33] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula,
“Calendaring for wide area networks,” in Proceedings of the
2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.
New York, NY, USA: ACM, 2014, pp. 515–526. [Online].
Available: http://doi.acm.org/10.1145/2619239.2626336

[34] Y. Chen, S. Jain, V. K. Adhikari, Z. L. Zhang, and K. Xu, “A
first look at inter-data center traffic characteristics via Yahoo!
datasets,” in 2011 Proceedings IEEE INFOCOM, April 2011,
pp. 1620–1628.

[35] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-
nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin,
M. Amarandei-Stavila, M. Robin, A. Siganporia, S. Stuart,
and A. Vahdat, “BwE: Flexible, hierarchical bandwidth
allocation for WAN distributed computing,” in Proceed-
ings of the 2015 ACM Conference on Special Interest
Group on Data Communication, ser. SIGCOMM ’15. New
York, NY, USA: ACM, 2015, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787478

[36] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and
I. Menache, “Dynamic pricing and traffic engineering for
timely inter-datacenter transfers,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. New
York, NY, USA: ACM, 2016, pp. 73–86. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934893

[37] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,

S. Stuart, and A. Vahdat, “B4: Experience with a globally-
deployed software defined WAN,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 3–14. [Online].
Available: http://doi.acm.org/10.1145/2486001.2486019

[38] L. Luo, H. Yu, Z. Ye, and X. Du, “Online deadline-aware bulk
transfer over inter-datacenter wans,” in IEEE INFOCOM 2018
- IEEE Conference on Computer Communications, April 2018,
pp. 630–638.

[39] M. Noormohammadpour, C. S. Raghavendra, and S. Rao,
“DCRoute: Speeding up inter-datacenter traffic allocation while
guaranteeing deadlines,” in Proceedings of the 2016 IEEE
23rd International Conference on High Performance Comput-
ing (HiPC), Dec 2016, pp. 82–90.

[40] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
datacenter bulk transfers with netstitcher,” in Proceedings
of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM
’11. New York, NY, USA: ACM, 2011, pp. 74–85. [Online].
Available: http://doi.acm.org/10.1145/2018436.2018446

[41] Y. Wang, S. Su, A. X. Liu, and Z. Zhang, “Multiple bulk data
transfers scheduling among datacenters,” Computer Networks,
vol. 68, pp. 123 – 137, 2014, communications and Networking
in the Cloud.

[42] S. Su, Y. Wang, S. Jiang, K. Shuang, and
P. Xu, “Efficient algorithms for scheduling multiple
bulk data transfers in inter-datacenter networks,” In-
ternational Journal of Communication Systems, vol. 27,
no. 12, pp. 4144–4165, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2603

[43] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. C. M. Lau,
“Orchestrating bulk data transfers across geo-distributed data-
centers,” IEEE Transactions on Cloud Computing, vol. 5, no. 1,
pp. 112–125, Jan 2017.

[44] Y. Feng, B. Li, and B. Li, “Jetway: Minimizing costs on inter-
datacenter video traffic,” in International Conference on Mul-
timedia, 2012.

[45] T. Nandagopal and K. P. N. Puttaswamy, “Lowering
inter-datacenter bandwidth costs via bulk data scheduling,”
in Proceedings of the 2012 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Comput-
ing, ser. CCGRID ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 244–251. [Online]. Available:
https://doi.org/10.1109/CCGrid.2012.70

[46] Y. Feng, B. Li, and B. Li, “Postcard: Minimizing costs on inter-
datacenter traffic with store-and-forward,” in 2012 32nd Inter-
national Conference on Distributed Computing Systems Work-
shops, June 2012, pp. 43–50.

[47] W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “Trafficshaper: Shap-
ing inter-datacenter traffic to reduce the transmission cost,”
IEEE/ACM Transactions on Networking, pp. 1–14, 2018.

[48] W. Shi, C. Wu, and Z. Li, “A shapley-value mechanism for
bandwidth on demand between datacenters,” IEEE Transac-
tions on Cloud Computing, vol. 6, no. 1, pp. 19–32, Jan 2018.

[49] W. K. Tan, D. M. Divakaran, and M. Gurusamy, “Uniform price
auction for allocation of dynamic cloud bandwidth,” in 2014
IEEE International Conference on Communications (ICC),
June 2014, pp. 2944–2949.

[50] Y. Li, H. Xie, and Y. Liao, “Blossom: Content distribution
using inter-datacenter networks,” in Proceedings of the 2016
IEEE Global Communications Conference (GLOBECOM), Dec
2016, pp. 1–6.

[51] M. Noormohammadpour, C. S. Raghavendra, S. Rao, and
S. Kandula, “DCCast: Efficient point to multipoint transfers
across datacenters,” in Proceedings of the 9th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 17). Santa
Clara, CA: USENIX Association, 2017.

[52] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a
cloud service using inter-datacenter networks,” in Proceedings
of the 2012 20th IEEE International Conference on Network
Protocols (ICNP), ser. ICNP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 1–11. [Online]. Available:

28



http://dx.doi.org/10.1109/ICNP.2012.6459966
[53] L. Luo, H. Yu, and Z. Ye, “Deadline-guaranteed point-to-

multipoint bulk transfers in inter-datacenter networks,” in 2018
IEEE International Conference on Communications (ICC),
May 2018, pp. 1–6.

[54] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li,
W. Xu, and J. Rexford, “Optimizing bulk transfers with
software-defined optical wan,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. New
York, NY, USA: ACM, 2016, pp. 87–100. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934904

[55] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. N.
B., C. Bhagat, S. Jain, J. Kaimal, S. Liang, K. Mendelev,
S. Padgett, F. Rabe, S. Ray, M. Tewari, M. Tierney,
M. Zahn, J. Zolla, J. Ong, and A. Vahdat, “B4 and
after: Managing hierarchy, partitioning, and asymmetry for
availability and scale in google’s software-defined WAN,” in
Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’18. New
York, NY, USA: ACM, 2018, pp. 74–87. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230545

[56] N. E. Young, “Sequential and parallel algorithms for mixed
packing and covering,” in Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, Oct 2001, pp. 538–546.

[57] S. Jain, K. Fall, and R. Patra, “Routing in a delay
tolerant network,” in Proceedings of the 2004 Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’04. New
York, NY, USA: ACM, 2004, pp. 145–158. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015484

[58] N. Laoutaris and P. Rodriguez, “Good things come to those who
(can) wait or how to handle delay tolerant traffic and make
peace on the Internet,” in Proceedings of ACM HotNets-VII,
2008.

[59] N. Laoutaris, G. Smaragdakis, R. Stanojevic, P. Rodriguez,
and R. Sundaram, “Delay-tolerant bulk data transfers on
the Internet,” IEEE/ACM Transactions on Networking,
vol. 21, no. 6, pp. 1852–1865, Dec. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2012.2237555

[60] W. Li, K. Li, D. Guo, G. Min, H. Qi, and J. Zhang, “Cost-
minimizing bandwidth guarantee for inter-datacenter traffic,”
IEEE Transactions on Cloud Computing, pp. 1–1, 2018.

[61] W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “More peak, less dif-
ferentiation: Towards a pricing-aware online control framework
for inter-datacenter transfers,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), June
2017, pp. 2105–2110.

[62] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, and
Y. Zhang, “Optimizing cost and performance for mul-
tihoming,” in Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, ser. SIGCOMM ’04. New York,
NY, USA: ACM, 2004, pp. 79–92. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015478

[63] L. S. Shapley, “A value for n-person games,” in Contributions
to the Theory of Games II, H. W. Kuhn and A. W. Tucker, Eds.
Princeton: Princeton University Press, 1953, pp. 307–317.

[64] S. Dobzinski, A. Mehta, T. Roughgarden, and M. Sundarara-
jan, “Is shapley cost sharing optimal?” in Algorithmic Game
Theory: First International Symposium, B. Monien and U.-P.
Schroeder, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, pp. 327–336.

[65] I. Kremer and K. G. Nyborg, “Underpricing and market power
in uniform price auctions,” Review of Financial Studies, vol. 17,
no. 3, pp. 849–877, 2004.

[66] Y. Li, L. Zhang, Y. Jia, Y. Liao, and H. Xie, “Calantha: Content
distribution across geo-distributed datacenters,” in Proceedings
of the 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), May 2017, pp. 724–729.

[67] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity:
A low-delay multi-party conferencing solution,” IEEE Journal

on Selected Areas in Communications, vol. 31, no. 9, pp. 155–
164, September 2013.

[68] M. Noormohammadpour, C. S. Raghavendra, S. Kandula, and
S. Rao, “QuickCast: Fast and efficient inter-datacenter transfers
using forwarding tree cohorts,” in Proceedings of Infocom 2018,
2018.

[69] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204–1216, Jul 2000.

[70] A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer,
P. Magill, E. Mavrogiorgis, J. Pastor, S. L. Woodward,
and J. Yates, “Bandwidth on demand for inter-data center
communication,” in Proceedings of the 10th ACM Workshop
on Hot Topics in Networks, ser. HotNets-X. New York,
NY, USA: ACM, 2011, pp. 24:1–24:6. [Online]. Available:
http://doi.acm.org/10.1145/2070562.2070586

[71] S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter data-
center networking: The role of optical packet switching and
flexible bandwidth optical networking,” in 2012 16th Interna-
tional Conference on Optical Network Design and Modelling
(ONDM), April 2012, pp. 1–6.

[72] Y. Yin, L. Liu, R. Proietti, and S. J. B. Yoo, “Software defined
elastic optical networks for cloud computing,” IEEE Network,
vol. 31, no. 1, pp. 4–10, January 2017.

[73] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly efficient
data migration and backup for big data applications in elas-
tic optical inter-data-center networks,” IEEE Network, vol. 29,
no. 5, pp. 36–42, September 2015.

[74] E. Danna, S. Mandal, and A. Singh, “A practical algorithm
for balancing the max-min fairness and throughput objectives
in traffic engineering,” in Proceedings - IEEE INFOCOM, 03
2012, pp. 846–854.

[75] M. Allalouf and Y. Shavitt, “Centralized and distributed algo-
rithms for routing and weighted max-min fair bandwidth alloca-
tion,” IEEE/ACM Transactions on Networking, vol. 16, no. 5,
pp. 1015–1024, Oct 2008.

[76] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao,
and C. Guo, “Explicit path control in commodity data cen-
ters: Design and applications,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2768–2781, October 2016.

[77] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic
scheduling of network updates,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New
York, NY, USA: ACM, 2014, pp. 539–550. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626307

[78] A. Lodi and G. Zarpellon, “On learning and branching: a sur-
vey,” TOP: An Official Journal of the Spanish Society of Statis-
tics and Operations Research, vol. 25, no. 2, pp. 207–236, July
2017.

[79] N. Rosenfeld, E. Balkanski, A. Globerson, and Y. Singer,
“Learning to optimize combinatorial functions,” in ICML, 2018.

29


