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Abstract—DHCP is widely used to dynamically allocate IP
addresses to the devices on local area networks, but the explosive
increases of WiFi devices and their frequent mobility pose great
challenges on DHCP performance in wireless LANs. In this
paper, by analyzing large scale real network traces, we observe
that the dynamic WiFi user behavior (e.g., online time pattern
and spatio-temporal mobility pattern) leads to the poor DHCP
performance. The IP pools in some VLANs have been exhausted
in rush hours although the total IP utilization in WLAN is only
24%. Therefore, we have to configure IP lease times and IP pools
dynamically and make sure that they are adaptive to the WiFi
user behavior. In order to achieve this goal, we characterize and
model the user behavior across online time pattern and spatio-
temporal mobility pattern. Then we propose BDAC, a behavior-
aware dynamic adaptive configuration, which is combined of two
strategies: adaptive IP lease time configuration and dynamic IP
pool configuration. The former is to set adaptive lease times
across user roles and area types based on online time pattern
to reclaim IP addresses in time and reduce the peak IP usage,
while the latter dynamically migrates the IP addresses across
VLANs based on spatio-temporal mobility correlation to save the
IP addresses. Using the real network traces of a different week,
we conduct experiments to evaluate the performance of BDAC.
Results show that BDAC can save up to 60% of IP addresses and
the actual IP utilization rises from 24% to 59%. Furthermore,
BDAC maintains high IP utilization when the number of VLANs
in a WLAN increases.

I. INTRODUCTION

The Dynamic Host Configuration Protocol (DHCP) [1] is
used to automatically assign IP address and related configu-
ration information to client on local area networks (LANs).
Because of its convenience, DHCP is widely adopted in wire-
less LANs (WLANs), especially in campuses and enterprises
where the networks are large scale with many WiFi devices.
However, the explosive increases of WiFi devices, such as
smartphones, tablets and smart watches in recent years [2]
[3], and their frequent mobility increase the demand on IP
addresses in WLANs. While the configuration on DHCP server
remains the same in WLANs, dynamic WiFi user behavior
(e.g., online time pattern and spatio-temporal mobility pattern)
poses great challenges on DHCP performance. For example,
if a user with one WiFi device use an IP address in one place
for a short time and moves to another place, her device may
acquire a new IP address while the previous IP address is not
reclaimed. As a result, her device occupies two IP addresses
for a certain period of time and it causes the waste of IP

address. In addition, a user may hold several WiFi devices.
This aggravates the waste of IP addresses.

In order to pursue high efficiency of IP address utilization,
we have to configure the parameters on DHCP server dynam-
ically and make sure that they are adaptive to the WiFi user
behavior. There are two important IP configuration parameters
on DHCP server: IP Lease Time and IP Pool. The former
determines how long a device can use an IP address within one
request time. If DHCP server does not receive request message
from client within a lease time, it reclaims the IP address
when the lease expires [1]. The latter determines the maximum
number of IP addresses provided for clients in a Virtual
LAN (VLAN). Specifically, the large scale WLAN is usually
separated into multiple VLANs to reduce the broadcast traffic
[4]. Each VLAN is configured with an IP pool containing a
number of IP addresses. As WiFi user behaves dynamically,
the current static IP lease time and IP pool configuration on
DHCP server in WLANs lead to poor DHCP performance.

Existing studies have tried to improve DHCP performance
by adjusting IP lease time according to mobile device operat-
ing systems [5] [6] and user online patterns [7] [8]. To best
of our knowledge, no prior work has studied the impact of
spatio-temporal mobility pattern on DHCP performance. In
this paper, by analyzing large scale real network traces, we
studied impact of user behavior on DHCP performance with
static IP configuration and observed that dynamic WiFi user
behavior led to poor performance. For example, users arrive
with sharp increment and leave after a short stay in the VLAN
of eating area. On the one hand, if we configure a large IP pool
that the number of IP addresses exceeds the peak IP demand
in that VLAN, a large amount of IP addresses will be wasted
in other time periods. On the other hand, if we configure a
small IP pool that the number of IP addresses does not meet
the peak IP demand, a number of clients are unable to get IP
addresses to access the Internet in rush hours. In addition, if
we configure a long lease time in this area, the IP addresses
are wasted because they are not reclaimed in time.

To address the challenges caused by dynamic WiFi user
behavior, we propose BDAC, a Behavior-aware Dynamic
Adaptive Configuration on DHCP server, to save the IP
addresses and improve IP utilization. Specifically, we firstly
model the WiFi user behavior across online time pattern
and spatio-temporal mobility pattern. Then we propose two
configuration strategies: adaptive IP lease time strategy and978-1-7281-2700-2/19/$31.00 2019 © IEEE



dynamic IP pool configuration strategy. The former is to set
dynamic lease times across user roles and area types based
on user online time pattern to reclaim IP address in time and
reduce the peak IP usage, the latter dynamically migrates IP
addresses across VLANs based on spatio-temporal mobility
correlation to save IP addresses. The main contributions of
this paper are as follows:
• To best of our knowledge, our measurement is one of the

largest-scale measurements and we make the observation
that the dynamic WiFi user behavior leads to poor DHCP
performance. The IP pools of two VLANs are exhausted
in rush hours although the total IP utilization in the
WLAN is only 24%.

• We characterize the dynamic WiFi user behavior from
two dimensions: online time pattern and spatio-temporal
mobility pattern. We observe that online time pattern
varies across user roles and area types. Specifically, 80%
of online time sessions in eating area are shorter than
30 minutes while 50% of online time sessions in living
area are longer than 120 minutes for students. In addition,
spatio-temporal mobility pattern brings about IP demand
fluctuation over time and areas. We observe that the
number of online users in the VLAN of eating area
increases by 24 times in rush hours compared to the
average.

• We model the online time pattern with hyper-exponential
distribution and model the spatio-temporal mobility pat-
tern based on correlation of two spatio-temporal points.
Then we propose BDAC, which is combined of two con-
figuration strategies on DHCP server: adaptive IP lease
time configuration and dynamic IP pool configuration.
The first strategy is to set adaptive lease times across
user roles and area types to reduce the peak IP usage,
while the second strategy is to dynamically migrate IP
addresses across VLANs to save IP addresses.

• We conduct comprehensive experiments on real network
traces of a different week to evaluate the performance of
BDAC. Results show that BDAC outperforms the existing
methods that BDAC can save up to 60% of IP addresses
and the actual IP utilization rises from 24% to 59%. In
addition, BDAC shows strong robustness that it maintains
high IP utilization when the number of VLANs in a
WLAN increases.

The rest of this paper is organized as follows. Section II
describes the background on DHCP and our collected dataset.
In section III, we characterize and model the dynamic user
behavior across online pattern and spatio-temporal pattern.
Section IV presents the behavior-aware dynamic adaptive
configuration strategies and evaluation results are presented
in V. Section VI presents the related work and we conclude
the paper in Section VII.

II. BACKGROUND AND DATASET

A. Background on DHCP
There are two important IP configuration parameters on

DHCP server and we will describe them below in detail.

Fig. 1: The widely deployed DHCP architecture.

IP Pool: As the network is large scale with many clients,
the broadcast messages sent by the clients will consume
large amounts of bandwidth. Therefore, large scale WLAN
is generally separated into multiple VLANs to reduce the
broadcast messages [4]. However, it is unnecessary to have
a DHCP server for each VLAN. The DHCP relay agent [9]
is introduced to convert the broadcast DHCP packet from the
client in its broadcast domain, and forward it to DHCP server.
Fig. 1 shows the widely deployed DHCP architecture in large
scale WLANs. The DHCP relay agents enable one DHCP
server to control multiple VLANs. The IP pool configured
for each VLAN on DHCP server could be combined of two
IP sets: primary IP set and secondary IP set. The primary
IP set is static once it is configured. When the DHCP server
receives DHCP request message from the relay agent, it firstly
determines the corresponding IP pool by ANDing the IP
address of relay agent with the primary IP set in each IP pool
and then allocates the IP address in that pool to the client.
The IP addresses in the primary IP set are firstly allocated
and the addresses in secondary IP set are allocated only when
the primary IP set is exhausted. The number of IP addresses in
secondary IP set can be configured dynamically with multiple
subnets, so that network administrators could manage the size
of IP pool flexibly by increasing or decreasing the number of
subnets in each VLAN.

IP Lease Time: The DHCP [1] enables clients to attach
to network automatically. Specifically, there are three states
in a complete IP lease period: initializing state, renewing
state and releasing state. In the initializing state, a client
acquires an IP address with a lease time after four message
exchanges: client broadcast discover message, DHCP server
offer message, client unicast request message and DHCP
server acknowledgement message. In the renewing state, the
client sends a request message to the DHCP server to extend
the IP lease. The request message is sent periodically after half
of the lease time if the client is still active. The releasing state
happens in two kinds of cases. First, the client sends an explicit
release message to the DHCP server to release the IP address
before she leaves the network. Second, if the client has not sent
the request message for a lease time, the DHCP server expires
the lease and reclaims the IP address. The previous work has
shown that about 1% of clients actively send release messages
(the first case) to release the IP addresses [8]. Therefore, the
network administrators should set up lease time adaptively.
Long lease times can lead to the exhaustion of the IP pool



while short ones increase the load of DHCP servers.

B. DataSet

The WLAN in T campus is large scale with about 40,000
individuals, 100,000 WiFi devices and 110,000 public IPv4
addresses. There are 26 VLANs covering 155 buildings with
8000 APs. All APs share the same SSID, allowing the WiFi
users auto-connection when roaming in campus. We collect the
real network traces for two typical weeks from 04/07/2018 to
04/20/2018. The traces in former week are used to generate the
configuration strategies and the traces in latter week are used
for evaluation. The dataset include about 65 million DHCP
logs, 110 million SNMP logs and 1 million AAA [10] logs.

We collect DHCP logs which record the message exchanges
between the clients and the DHCP servers. Each entry records
an interaction event. A sample of DHCP log has the following
format: timestamp, event, IP address, MAC. The fields in the
log represent that a user with MAC interacts with the DHCP
server on the address of IP address. The event types, e.g., offer
(initializing state), renew (renewing state), release and expire
(releasing state), are detailedly described in Section II-A. We
correlate the event to calculate the IP usage and load of DHCP
server [5]. In addition, there are a number of scope full events
in the logs which mean that the IP pool for that VLAN is
exhausted.

We setup SNMP manager program to pull SNMP logs from
APs every 5 minutes. The SNMP logs provide the detailed
information of each AP and their associated clients, including
IP address, MAC address, AP name, Physical Channel, Inter-
face Utilization, etc. We only extract part of the information
in our work. A sample of SNMP logs has the following
format: timestamp, IP address, AP name, client MAC. The
fields represent a client with IP address and client MAC is
connecting to an AP with AP name at time of timestamp.
Each AP is named with building name and a unique numeric
ID, which is used for identifying the location of that AP.

Based on authentication credentials in T campus, we are
able to obtain the role (e.g. student and teacher) of authenti-
cated clients from the campus information system. A sample
of authentication log has the following format: timestamp, IP
address, client ID, role. The fields in the log represent the
client with client ID and role authenticates the IP address at
time of timestamp. To best of our knowledge, we are the first
to study the user online time pattern with different roles.

It is worth pointing out that the privacy issues of the dataset
are seriously considered. We collaborated with the network
administrators to anonymize the sensitive network traces to
remove any personally identifiable information before using
it in our study. Specifically, we anonymize the IP addresses,
MAC addresses and client ID with the prefix-preserving
anonymization as proposed in [11]. The anonymization meth-
ods and parameters are kept consistent over all logs. We then
use the timestamp and client MAC address to correlate the
three network traces.

As shown in previous work [12] [8], area types can provide
useful information about the aggregated user behavior. We

TABLE I: The Count of VLANs and Users in Studied Campus
Network

(a) VLAN count in different areas
No. Building Type Count
1 Studying Area 6
2 Working Area 6
3 Eating Area 1
4 Living Area 13
# Total 26

(b) User number in different roles
No. User Role Number
1 Student 27491
2 Teacher 9373
3 Unknown 501
# Total 37365

divide 155 buildings into 4 area types according to their
functions: studying area (including classrooms and libraries),
working area (including offices and departments), eating area
and living area. There are 26 VLANs and each VLAN is
configured for multiple buildings with the same area type in
the studied campus. The number of VLANs in each area is
listed in Table I(a). Since the WiFi user behavior is similar
in the VLANs of the same area type, we characterize their
behavior pattern at the area level to study the aggregated
behavior in VLANs [8]. In addition, we divide the users into
2 categories: students and teachers, to characterize the online
time behavior with different roles. The number of users in
each role is shown in Table I(b).

C. DHCP Performance Measurement

Based on the real network trace for a typical week (from
Saturday to Friday), we take the first step into studying the
DHCP performance in the WLAN. Fig. 2(a) shows correlation
between the total number of online users and the IP usage. We
observe that the number of online users follows daily pattern:
the number of users is high in the day and drops at midnight.
Similarly, the IP usage follows daily pattern. An interesting
observation is that the peak number of online users reaches
about 26,000, however, these users account for about 42,000
IP usage at the peak time. This can be explained by the reason
that a client may occupy an IP address in one place and needs
to apply for a new IP address when she move from a place
to another. Therefore, the client occupies two IP addresses for
a certain period of time. In order to quantify the IP usage
efficiency in studied WLAN, we define IP utilization as the
ratio of max online user vs. total IP addresses. Based on the
definition, we observe that the IP utilization is quite low in the
studied WLAN that the IP utilization only accounts for 24%.

(a) (b)

Fig. 2: (a). The number of online users and the IP usage. (b).
The number of IP usage and unserved users of the VLAN in
eating area.



In the further step, we study the IP usage in each VLAN.
We observe that the number of online users and the IP usage
also follows daily pattern. Surprisingly, we observe that the
IP pools are exhausted in two VLANs locating in eating area
and studying area (The DHCP server declines the IP lease
request and logs an scope full event.). Fig. 2(b) depicts the
IP usage and the number of unserved users in the VLAN of
eating area (The figure in the VLAN of studying area is similar
and omitted due to page limit). From the figure, we find that
the IP demand is extremely high in rush hours, resulting in
the IP pool exhaustion for a certain period of time. Therefore,
about one third of the users in that VLAN are unable to get
IP addresses to access the Internet in rush hours. However, the
IP demand is quite low at other times.

Summary: We conclude that the dynamic WiFi user behav-
ior leads to the poor DHCP performance that the IP pool
in some VLANs would be exhausted in rush hours, resulting
in large number of users being unable to get IP addresses,
although the total IP utilization in the WLAN is quite low.

III. DYNAMIC USER BEHAVIOR STUDY

The dynamic WiFi user behavior in the WLAN poses great
challenges on DHCP performance and it motivates us to take
the further study to characterize the user behavior. Since the
WiFi user behavior is similar in the VLANs of the same area
type [12], [8], we characterize the behavior pattern at the area
level to study the aggregated behavior in the VLANs. In detail,
we firstly study how WiFi user behaves from two dimensions:
online time pattern and spatio-temporal mobility pattern, and
then present corresponding models to capture their behavior
pattern.

A. Studying Online Time Pattern

Characterizing Online Time Pattern: The user online time
is defined as how long a client connects to the network in
a session. Determining user online time is a bit challenging
as the WiFi user behaves casually and they would leave the
network at anytime without sending any notice message. By
combining the DHCP logs and SNMP dataset, we design two
rules to determine user online time. The details are shown
below:
Rule1: If the client sends an explicit release message to the
DHCP server before she leaves the WLAN, the user online
time is denoted as (DHCP release time - DHCP offer time).
Rule2: If there is an expire message in the DHCP logs, we
believe that the client leaves the network before the timestamp
of the expire message. Then we find the timestamp when
the client is last seen in SNMP dataset and approximate user
online time with (SNMP last seen time - DHCP offer time).
Similar to the previous work [8], we observe that Rule1 only
accounts for less than 1% of total sessions in studied WLAN.
In other words, almost all users leave the network without
sending the explicit release message. Hence, it is important to
consider Rule2 in our study.

Based on these rules, we are able to characterize the user
online time pattern. In order to take a further study, we divide

(a) Students (b) Teachers

Fig. 3: CDF of the user online time distribution in different
areas with students and teachers.

the clients across user roles and area types. To best of our
knowledge, we are the first to study the user online time
with different roles. Fig. 3(a) and Fig. 3(b) depict the online
time distributions of students and teachers across different area
types respectively. We observe that the user online time pattern
follows long-tail distributions across user roles and area types
generally, however the pattern varies across user roles and area
types. For students, we observe that the online time is long in
living area that about 50% of online time sessions are more
than 120 minutes. However, the online time for teachers is
much shorter in living area that more than 50% of online
time sessions are less than 45 minutes. As for eating area,
the online time of students and teachers is similar and is very
short that about 80% of online time sessions are less than 30
minutes. In studying area, the online time pattern of students
is closely related to the length of a class. As for working area,
the teachers are more likely to stay for a longer time than the
students.

Since the online time pattern varies across user roles and
area types, the static IP lease time configuration on DHCP
does not adapt to the dynamic online time pattern. Long
lease times will prevent the DHCP server from reclaiming IP
addresses in time and result in the waste of IP addresses. Short
lease times will introduce much load on the DHCP server.
Therefore, setting adaptive IP lease times based on the online
time pattern is an appealing approach to reduce the peak IP
usage while not introducing much DHCP load.

Modeling Online Time Pattern: In order to determine the
proper IP lease time for each combination of user roles and
area types, we first model the user online time distribution
and then create the model to reveal the relationship between
IP lease times and IP usage. As shown in Fig. 3 that the
user online time pattern in studied WLAN follows long-tail
distributions, we use two-stage hyper-exponential distribution
[13] to model the user online time distribution for each com-
bination of user roles and area types. The density function can
be represented as follows: f(x) = a1pe

−a1x+a2(1−p)e−a2x,
where a1 > 0, a2 > 0, and p ∈ [0, 1]. We then use the iterative
method to determine the values of these parameters for each
combination. Fig. 4 shows the modeling results compared with
the real data of two combinations (i.e. students in working area
and teachers in eating area) which the residual errors are 0.007
and 0.011 respectively. The results validate the effectiveness



(a) Students (b) Teachers

Fig. 4: CDF of the user online time distribution with the
modeling results compared with the real data.

of our user online time distribution model. Due to the page
limit, we omit the rest figures in the paper.

We define user online time as l1 and IP occupation time as
l2. The l2 means how long a client occupies the IP address for
a complete IP lease period. Since Rule2 accounts for more than
99% of total sessions in studied WLAN, we focus on Rule2
in our work. The relationship of l1 and l2 can be determined
with l1+L− l1%(L/2) = l2 where L is the IP lease time and
% is the symbol of modulo. For example, if the user connects
to the network and leave the network after 20 minutes and the
IP lease time L in the network is set to 30 minutes, the IP
occupation time l2 would be 45 minutes. Specifically, the user
would send renew message after connecting the network for
15 minutes and then the DHCP server release the IP address
while not receiving the message for a lease time. In area s,
we define the density function of students and teachers as
f1s (x) and f2s (x) respectively. Then the density function of IP
occupation time can be represented as follows:

Is(y) = {θ
y∑

y−L1
s

p1s(x)f
1
s (x) | x+ L1

s − x%(L1
s/2) = y}

+{(1− θ)
y∑

y−L2
s

p2s(x)f
2
s (x) | x+ L2

s − x%(L2
s/2) = y}

where θ is the proportion of sessions that is produced by
students, L1

s and L2
s represent the IP lease times of students

and teachers in the VLANs of area s respectively, and p1s(x)
and p2s(x) represent the proportion of sessions with length of
x on students and teachers in area s respectively.

Based on the density function of IP occupation time in area
s, we model the IP usage at each time based on the user
arrival rate on the assumption that the user arrival is subject
to a Poisson distribution with a constant arriving rate over a
short period of time [14]. The IP usage at specific temporal
point t in area s can be formulated as:

ms(t) =

t∑
t0=1

λs(t)−
t∑

t0=1

[Is(t− t0)
t0∑

t1=1

λs(t1)]

where λs(t) is the number of users arriving at time t. Then
the total IP usage M(t) at time t can be represented by:

M(t) =
∑
s∈S

ms(t) (1)

(a) Working area (b) Studying area

(c) Eating area (d) Living area

Fig. 5: The number of online users with temporal mobility
pattern. The peak time periods are indicated by shading.

Our IP usage model is able to calculate the IP usage
with different lease time settings across user roles and area
types. As a result, we can choose the optimal configuration
combination of IP lease time according to the requirement and
constraint on DHCP servers. The details will be described in
Section IV-A.

B. Studying Spatio-temporal Mobility Pattern

Characterizing Spatio-temporal Mobility Pattern: The
user spatio-temporal mobility pattern brings about the IP
demand fluctuation among areas with the change of time. In
order to conduct an efficient IP pool configuration strategy, we
characterize the temporal pattern and spatial pattern of user
behavior and the detail is shown below.

Fig. 5 depicts the number of online users across areas for a
typical day. The four curves show that the temporal behavior
of online user varies: 2 peaks a day in working area and eating
area; 3 peaks a day in studying area and 1 peak in living area.
The online user numbers in working, studying and living area
are doubled in the peak compared to the average. Surprisingly,
we find that the online user number in eating area increases by
24 times in the peak compared to the average. Then, we derive
certain periods of time when the online users reach the peak
for each area which are indicated by shading in Fig. 5. We
find that the peak time are intersected across different areas. If
the number of online user in one area reaches the peak, while
the number of online user reaches the valley in the rest of
areas. For example in 23:00-24:00, the online user reaches the
peak in living area, while the online user reaches the valley in
the rest of areas. These phenomena motivate us to study the
spatial mobility pattern of online users.

We use the anonymized client MAC and the associated
AP to track the user spatial mobility pattern. Fig. 6 depicts
the mobility pattern of online user across areas for typical
time periods. We observe that the mobility between different
areas is large scale with thousands of users and their mobility
pattern is closely related to their daily life regularity. A large
number of users move to the studying area and working area



Fig. 6: The typical time periods of user spatial mobility pattern.

from living area in the morning. This can be explained by
the fact that one part of users should attend the morning class
and the rest should go to working area. There are additional
4,000 online users in the working area which can be explained
by the reason that teachers always go to work from outside
campus. At noon, the clients in working area, studying area
and living area all move to eating area for meals and at night,
the clients all return to the living area. Another interesting
observation is that there are additional 4,500 online users in
living area at night. This can be explained that an individual
usually connects the WiFi with several WiFi devices at the
same time in living area [15].

The spatio-temporal mobility pattern brings about the IP
demand fluctuation across areas with change of time. The
static IP pool configuration does not meet the dynamic mo-
bility pattern of online user. If the number of IP addresses in
the pool is configured merely exceeding the peak IP usage,
a large amount of IP addresses are wasted at spare time.
However, if the number of IP addresses is not configured to
meet the peak IP demand, a number of clients are unable
to get IP addresses to access the Internet in rush hours.
The spatial-temporal redundancies of IP address result in the
waste of valuable IP addresses. Therefore, dynamic IP pool
configuration based on user spatio-temporal mobility pattern
is an appealing approach to save IP addresses.

Modeling Spatio-temporal Mobility Pattern: In order to
conduct the dynamic IP pool configuration strategy, we create
the user mobility model to reveal the relationship between
the spatial and temporal correlation. The number of online
user at specific spatial-temporal point can be represented by
a random variable ys(t) where s and t denote spatial and
temporal index respectively. Assuming ys(t) is derived from a
stochastic process Ys(t), we formulate the online user number
with the form as follows:

{Ys(t) : s ∈ S, t ∈ T}

where S = {s1, · · · , sN} and T = {t1, · · · , tP } denote
spatial and temporal domain respectively. In our work, the
spatial domain is divided into N and the temporal domain
is discretized into P segmentations to aggregate the mobility
statistics with equivalent segmentations. Based on our method,
the spatial and temporal online user behavior can be captured
in a unified manner.

We then introduce the spatial-temporal covariance function
to study the spatio-temporal interaction of online users. Given
a stochastic process in location s that is temporally first order

stationary, thus, E[Ys(t)] = µ and V ar[Ys(t)] = σ2, we define
the covariance for two spatial-temporal points:

Cov(Ysi(tp), Ysj (tq)) =
1

L

∑
L

((Ysi(tp)−µsi)(Ysj (tq)−µsj ))

where L is a set of time points that fall into the time tp (or tq),
and µsi and µsj represent the average value of a stochastic
process Ys(t) in si and sj respectively.

Finally, its correlation function can be defined as:

ρ(Ysi(tp), Ysj (tq)) =
Cov(Ysi(tp), Ysj (tq))

σsiσsj
(2)

where σsi and σsj represent the standard deviation of a
stochastic process Ys(t) in si and sj respectively. The cor-
relation of two spatial-temporal points is significant when
the correlation value approaches -1. This means that the user
mobility happens between the two spatio-temporal points.

Our user mobility model reveals the relationship between
the spatial and temporal correlation of WiFi user behavior. So
we can design the corresponding algorithm to configure the
IP pools flexibly (i.e., migrating IP addresses) based on the
demand of IP addresses in each spatial domain. The details
will be described in Section IV-B.

IV. DYNAMIC ADAPTIVE IP CONFIGURATION ALGORITHM

Based on the detailed WiFi user behavior study, we propose
BDAC, which is combined of two configuration strategies
on DHCP server: adaptive IP lease time configuration and
dynamic IP pool configuration. The first strategy is to set
adaptive IP lease times in VLANs across user roles and area
types to reclaim IP address in time and reduce the peak IP
usage. The second strategy is to dynamically configure the
IP pool in each VLAN based on spatio-temporal mobility
correlation.

A. Configuring Adaptive Lease Time

Since online time pattern varies across user roles and area
types, conducting the static IP lease time configuration on
DHCP server does not accommodate to the dynamic online
time patterns. Therefore, we should set adaptive IP lease times
to reduce the peak IP usage. Equation (1) provides the IP
usage at each temporal point with different IP lease times.
The objective of adaptive lease time configuration strategy is
to minimize the peak IP usage while the increment of peak
DHCP load is under a threshold since overload in DHCP server
would influence the IP address allocation. The DHCP load can
be computed from the message exchanges between the clients
and the DHCP server which is widely used in previous work
[5], [8]. Then the problem can be written as the following
optimization problem with DHCP load constraint:

min max[M(t)] (3)

s.t. Loadnow ≤ (1 + β) · Loadini (4)

where Loadnow and Loadini represent the maximum DHCP
load based on the adaptive IP lease time strategy and original



Algorithm 1 Dynamic Lease Time Configuration Strategy
Input: L, N , β
Output: S, P

1: Initialization: d← 0,
−→

MinIP ,
−→

MinLoad, R← new[N ]

2: function Search(d, res,
−→

MinIP ,
−→

MinLoad)
3: for each (li, lj) in L do
4: add (li, lj) to R;

5:
−→

MinIP [d],
−→

MinLoad [d]← (li, lj);

6: if ComputeLoad(
−→

MinLoad) ≥ (1 + β) · Loadini then
7: continue;
8: if ComputeIP(

−→
MinIP ≥ P ) then

9: continue;
10: if d = N then
11: S ← R;
12: P ← Compute(

−→
MinIP );

13: continue;
14: Search(d+ 1, res,

−→
MinIP ,

−→
MinLoad)

static IP lease time configuration respectively. The β refers to
the maximum increment of the load on DHCP server while
not affecting the DHCP server performance.

To get the optimal lease time setting strategy, the basic idea
is to construct the solution tree of each combination of user
roles and area types, and then traverse the solution space to
get the optimal lease time strategy. To reduce the searching
process of solution space, we first give two properties:
Property 1: When the lease time of only one role in one area
is decreased and the lease times of the rest are not changed,
the number of IP address used at time t will decrease and the
DHCP load at time t will increase, and vice versa.
Property 2: If the solution needs more IP addresses than
the current optimal solution or the DHCP load exceeds the
threshold, the subtree whose root is the current node is not
the optimal solution.

According to the above two properties, we introduce a
load-aware dynamic lease time optimization algorithm with
the DHCP load constraint. The specific description is shown
in Algorithm 1. We let the lease time array L represent all
potential lease time combinations of teachers and students in
each area, N represents the depth of the solution tree which
depends on the number of area types. The VLANs in the same
area will share the same lease time. To improve the efficiency
of the algorithm, we construct the

−→
MinIP and

−→
MinLoad to

represent the lease time strategies of the smallest peak address
usage and the smallest peak DHCP load at the current node
respectively. The depth d is the layer of the solution tree and
initialized to 0 (line 1-2). In each layer d, we check every
pair of combined lease time in L (line 3-6). If the increment
of maximum DHCP load of

−→
MinLoad strategy exceeds the

threshold (line 7-8) or the maximum IP usage of
−→

MinIP
strategy exceeds the current optimal usage P (line 9-10), the
subtree whose root is the current node is not the optimal
solution. If the leases of the last lease time pair are determined,
the current strategy is the temporary optimal solution. Then the

Algorithm 2 Dynamic IP pool configuration Strategy
Input: Ys(t),γ, I, B, T , S
Output: N
1: Initialization: N ← sum(I)
2: for (tp, si) in (T, S) do
3: R = Ysi(tp+1)− Ysi(tp);
4: if R > 0 then
5: for (tq, sj) in (T, S) do
6: if ρ(Ysi(tp), Ysj (tq)) < γ then
7: Move IP addresses from (tq, sj) to (tp, si);
8: update R;
9: update N with R,B;

optimal lease strategy S and the minimum IP usage based on S
are updated (line 11-14). Otherwise, we conduct the recursive
search of the solution tree (line 15). The time complexity of
Algorithm 1 is O(LN ).

B. Configuring Dynamic IP Pool

Since the user spatio-temporal mobility pattern brings about
the IP demand fluctuation among areas with the change of
time, conducting static IP pool configuration may bring about
two extreme phenomena: low IP address utilization in spare
time and IP pool exhaustion in rush hours. The spatio-temporal
redundancy of IP addresses and the changeability of number
of IP addresses motivate us to dynamically configure IP pool
accordingly to save the IP addresses. Equation (2) provide
the correlation between two spatio-temporal points, so we can
design dynamic IP pool configuration strategy to dynamically
migrates the IP address across VLANs to meet the IP demand
of each spatio-temporal point.

The detailed description is shown in Algorithm 2. The γ is
the threshold to determine if any two spatio-temporal points
have spatio-temporal mobility correlation. The I is an array
to represent the number of IP addresses in the primary IP set
of each VLAN. The B represents block size which is defined
as IP address number of a subnet in secondary IP set. The
primary IP set is static once it is configured, and we are able to
change the number of subnets in secondary IP set to configure
the size of IP pool in each VLAN. We calculate the total IP
usage N after initializing a fixed number of IP addresses in
each VLAN (line 1). For each spatio-temporal point (tp, si),
we calculate the change of online users based on Ys(t) (line
2-3). If the number of online users increases by R in area
si and the primary IP set is exhausted, we start to search for
the spatio-temporal point. If the correlation ρ of two points
is under a threshold γ, we believe that the users in area sj
move to si. The correlation ρ is calculated based on Equation
(2). Note that the correlation of two spatial-temporal points is
significant when the correlation value approaches -1. Then we
directly move the IP subnets from sj to si by configuring the
pool in two VLANs and update R (line 4-8). If there is no such
a point or the number of IP addresses configured from other
points is not enough, we configure the new IP subnets in si
and update the N (line 9). The time complexity of Algorithm
2 is O(S2T 2).



V. PERFORMANCE EVALUATION

The real network traces collected for two typical weeks are
used to conduct our experiment. The traces in the first week
are used to determine the value of IP lease time configuration
parameters and IP pool configuration parameters, while the
traces in the second week are used to evaluate the effectiveness
of BDAC.

A. Evaluation of Adaptive IP Lease Configuration

To evaluate the adaptive IP lease time configuration on
DHCP performance, we firstly conduct the static IP lease time
strategy (all areas share the same lease time) to depict the
maximum DHCP load and peak IP usage with different IP
lease times, and then we show the superior of adaptive IP
lease time configuration with the same DHCP load constraint,
comparing with the static IP lease time strategy.

Fig. 7(a) depicts the relationship between the maximum
DHCP load and peak IP usage with the static IP lease time
strategy when the IP lease time is set form 5 minute to 100
minutes. The DHCP load and IP usage are normalized by
dividing the values generated by the default IP lease time. We
observe that if the IP lease time increases, the peak IP usage
increases while the maximum DHCP load decreases, and vice
versa. Therefore, if we want to save the IP address, we could
reduce the IP lease time at the expense of increasing the DHCP
load. However, if the IP lease time is set too small, the DHCP
load increases exponentially while the peak IP usage has not
decreased too much. For example, if the lease time is set to 10
minutes, the maximum DHCP load increase by 100% while
the peak IP usage is only reduced by 20%.

Then, we study the correlation between the maximum
DHCP load and the peak IP usage with the static and adaptive
IP lease configurations. Fig. 7(b) depicts the comparison
between adaptive IP lease times and static IP lease time.
We observe that the static IP lease configuration is not able
to reach the optimal results since our method need less IP
addresses with the same DHCP load constraint or occupy less
DHCP load with the same IP usage constraint. For example, if
the threshold of DHCP load is set to 10%, the peak IP usage
by our method could be reduced by 9% while the peak IP
usage by static strategy is only reduced by about 5%. Based

(a) (b)

Fig. 7: (a). The peak IP usage and maximum DHCP load con-
figured with different static IP lease times. (b). The comparison
of adaptive IP lease times with static IP lease times.

on the network administrators’ feedback and consideration,
the increment of DHCP load in studied WLAN should not
exceed 20%. The peak IP usage based on our method could
be reduced by 12%, which is 50% better than the static IP
lease configuration strategy. The optimal lease time strategy
across user roles and area types is shown in Table II.

TABLE II: Adaptive Lease Time configuration across User
Roles and Area Types.

Studying Working Living Eating
Student 40 min 25 min 45 min 5 min
Teacher 20 min 45 min 15 5 min

B. Evaluation of Dynamic IP Pool Configuration

Dynamically configuring IP pool not only improves the
efficiency of IP usage, but also reduces the risk of IP pool
exhaustion. However, the dynamic IP pool configuration will
bring about two network issues: the network topology change
and the client re-association. In each step of configuration,
the network topology will be changed since the IP pools of
VLANs are reconfigured to migrate the IP addresses. This
process will only take few seconds to maintain the link-
state information [16] [17]. The other problem is that the
client should re-associate the networks to apply for a new
IP address when the previous IP address is not available
due to the migration of IP subnets between VLANs. This
process will also take few seconds [5]. The main idea of
dynamic IP pool configuration is to improve the IP utilization
while not introduce much network problem. To evaluate the
performance, we change the parameters used in Algorithm 2
(i.e., initial IP number in the primary IP set and the block
size in the second IP set). The initial IP number is set as
multiplying a factor (i.e., [0, 1.0]) to the maximum IP usage
in each VLAN. The block size is set from 4 to 2048.

Fig. 8 depicts the IP utilization with different block sizes
and initial IP numbers. In the upper figure, we observe that the
IP utilization decreases when the block size is larger than 256.
Therefore, setting a large block size is not an efficient way to
improve IP utilization because the number of arriving users is
not much and the rest of IP addresses are wasted. Surprisingly,
we find that the IP utilization decreases when the block size is
smaller than 32. This can be explained by the reason that the
first IP address and the last IP address in a block are used for
netmask address and broadcast address respectively which can
not be used by the clients. In the lower figure, we observe that
the IP utilization maintains stable when the initial IP number
is set to less than 60% of the maximum IP usage in each
VLAN. However, if the initial IP number is set to more than
60% of the maximum IP usage, the IP utilization decreases.

Then we study the two issues introduced by dynamic IP pool
configuration. Fig. 9 depicts the daily configuration number
with changes of block size and initial IP number. In upper
figure, we find that the daily configuration number decreases
rapidly when the block size increases. For example, the con-
figuration number is more than 100 when the block size is 8.
However, the configuration number is less than 10 times when



Fig. 8: IP utilization Fig. 9: Configuration number Fig. 10: Client re-connection rate

the block size is larger than 256. The lower figure shows that
the initial IP number also greatly influences the configuration
number when the block size is small. However, when the
block size is larger than 256, the configuration number is not
sensitive to the initial IP number. Fig. 10 shows that the client
re-connection rate is very low that only less than 0.8% of
clients need to re-connect the network when we reconfigure the
IP pool in VLANs. It only take few seconds to re-connecting
to the Internet. Note that the static IP configuration results in
that one third of users in VLAN of eating area are unable to
get IP addresses to access the Internet for hours.

Based on our analysis, we find that setting block size at
256 and initial IP number at 60% of maximum IP usage
respectively in each VLAN are the most suitable parameter
values. The results in the figures show that setting the two
values reaches high IP utilization (the IP utilization reach
about 60%) while not introducing much network issues (the
network topology only changes 6 times in each VLAN and the
clients’ re-association rate is less than 0.4%). These parameters
could be updated periodically (such as a week, a month or a
semester) to meet the change of WiFi network patterns.

C. Comparing BDAC with Existing Approaches

With the traces in the first week to determine the config-
uration parameters, we use the traces in the second week to
compare the BDAC with the traditional methods. The tradi-
tional methods fall into three main categories: (1) configuring
the average number of IP addresses in each VLAN (AVE)
which is used in studied WLAN; (2) configuring number of
IP addresses merely exceeding the maximum IP usage in each
VLAN (M-M); (3) configuring the adaptive IP lease time to
reduce the maximum IP usage in each VLAN [8] and then
configuring the number of IP addresses merely exceeding the
maximum IP usage (AL-MAX).

Fig. 11(a) depicts the saved IP number with each method.
The AVE method is the easiest way to configure the IP pool for
each VLAN which is also used in studied WLAN. However,

(a) Saved IP Number (b) IP Utilization

Fig. 11: (a). The saved IP number with 4 configuration
methods. (b). The IP utilization with 4 configuration methods.

this method leads to the poor DHCP performance. Note that
the clients in studying area and eating area are unable to get
IP addresses to access the Internet in rush hours. The M-M
method could save about 40,000 IP addresses and AL-MAX
method could save about 52,000 IP addresses by configuring
the different lease times across user roles and area types.
However, the above two methods are not able to reduce the
spatio-temporal redundancy of IP address. Therefore, the IP
addresses are wasted in spare time of the VLAN. Our method
could save 68,000 IP addresses by setting adaptive lease time
across user roles and area types and configuring the IP pool in
each VLAN dynamically based on spatio-temporal behavior.
We only use about 4,7000 IP addresses to meet the IP demand
in studied WLAN.

Fig. 11(b) depicts the IP utilization among four methods.
It is obvious that the AVE method leads to quite low IP
utilization that the IP utilization is 24%. The M-M method
which considers the maximum number of users in each VLAN
improves the IP utilization by 1.5 times and the actual IP
utilization is about 36%. The AL-MAX method reduces the
peak IP usage by setting adaptive IP lease time in each VLAN
so that the IP utilization reaches 44%. Our method shows the
best performance that the actual IP utilization is 59%.



Fig. 12: The IP utilization of four methods with different
number of VLANs

D. Evaluation of Robustness

In order to evaluate the robustness of our method, we re-
divide the WLAN in studied campus with different number of
VLANs. Fig. 12 depicts the IP utilization when the number
of VLANs changes from 2 to 8. We find that the performance
of BDAC is best when the number of VLAN changes. An
interesting observation is that the IP utilization gap between
M-M and AL-MAX is large when the VLAN number is 2,
however, the gap between AL-MAX and BDAC is not large.
This phenomenon can be explained by the reason that majority
of IP addresses are wasted due to the improper IP lease time
settings since the user mobility between VLANs is not appar-
ent when the number of VLAN is small. It motivates us to set
the adaptive IP lease time in each VLAN to save IP addresses
and improve IP utilization when the number of VLAN in
a WLAN is small. As the number of VLAN grows, the IP
utilization gap between AL-MAX and BDAC is gradually
growing. This is because that the AL-MAX is not able to
reduce the waste of IP addresses caused by spatio-temporal
mobility pattern. The spatio-temporal redundancy results in the
waste of IP addresses. Our method dynamically configures the
IP pool to migrate the IP subnets between VLANs to reduce
the spatio-temporal redundancy. In other words, our method
reuses the same IP address across VLANs in different time
periods and largely improves the IP utilization. Therefore, our
method maintains high efficiency of IP utilization even if the
number of VLANs is large in a WLAN.

VI. RELATED WORK

Understanding User Behavior: The collection and analysis
of datasets from mobile devices have attracted a number
of researches understanding the user behavior. X. Wei et.al
[18], [19] profiled the handheld devices and group users
into intuitive H-M-L groups based on the time-variance and
traffic behavior.Zhang et al. [20] combined with multi-source
data and designed three-layer mPat to explore the correlation
and divergence among the multi-source data to analyze and
infer human mobility. Another work by Alipour et al. [21]
quantified the correlation between the mobility pattern and
the network traffic pattern across device types, time and
space with integrated datasets. Previous works only provided
interesting measurement results or presented mathematical
models on the characteristics of user behavior. C. Miao et [22]

conducted a multi-dimension measurement study of large-scale
campus and provided the potential strategies from network
administrator point of view. Different from previous works,
our work observed the impact of the dynamic user behavior
on DHCP performance, and then we preset models and design
the behavior-aware dynamic adaptive IP configuration strategy
to improve the DHCP performance.

Studying DHCP Performance: The existing works on
DHCP focused on improving the DHCP performance by set-
ting the proper IP lease time. M. Khadilkar et al. [7] proposed
single adaptation strategy and exponential adaptation strategy
by dynamically adjusting IP lease times to reduce the DHCP
traffic. I. Papapanagiotou et al. [5] proposed an operating
system based on IP lease setting strategy to improve the IP
utilization. Chen et al. [14] characterized the use behavior and
provide an analytic model to study the relationship between
the session lengths and IP address usage. Li et al. [8] built an
emulation technique among the lease, address utilization and
DHCP overhead and proposed a load-aware IP lease strategy to
set different leases for each area. Wang et al. [6] analyzed the
mobility of users with different operating system and consider
both area types and operating system types to improve DHCP
performance. These works only focused on setting adaptive
lease time according to operating system or area type to im-
prove the DHCP performance. Different from previous works,
our work focused on two dimensions: user online time pattern
and spatio-temporal mobility pattern. We modeled the dynamic
user behavior and proposed two configuration strategies with
adaptive IP lease time configuration and dynamic IP pool
configuration to save IP addresses and improve IP utilization.

VII. CONCLUSION

In this paper, we observe that the dynamic WiFi user
behavior (i.e. online time pattern and spatio-temporal mobility
pattern) leads to poor DHCP performance based on the large
scale real network traces. In order to address this problem,
we firstly characterize and model the WiFi user behavior
across online time pattern and spatio-temporal mobility pat-
tern. Then we propose BDAC, a behavior-aware dynamic
adaptive configuration which is combined of two strategies:
adaptive IP lease time configuration and dynamic IP pool
configuration. The former is to set the adaptive lease time
across user roles and area types based on online time pattern to
reclaim IP in time and reduce the peak IP usage, and the latter
dynamically migrates the IP addresses between VLANs based
on spatio-temporal mobility correlation to save IP addresses.
We compare the BDAC with other methods using the real
network traces from a different week. Results show that BDAC
can save up to 60% IP addresses and the actual IP utilization
rises from 24% to 59%. Furthermore, our method shows
strong robustness that it maintains high IP utilization when
the number of VLANs grows large.

VIII. ACKNOWLEDGEMENT

This work is supported by the National Key R&D Program
of China (2016YFB0801301) and (2016QY12Z2103).



REFERENCES

[1] R. Droms, “Dynamic host configuration protocol,” 1997.
[2] M. U. 2018, www.stonetemple.com/mobile-vs-desktop-usage-study/.
[3] D. Lund, C. MacGillivray, V. Turner, and M. Morales, “Worldwide and

regional internet of things (iot) 2014–2020 forecast: A virtuous circle
of proven value and demand,” International Data Corporation (IDC),
Tech. Rep, vol. 1, 2014.

[4] F. E. Ross, “Hub for segmented virtual local area network with shared
media access,” Feb. 28 1995, uS Patent 5,394,402.

[5] I. Papapanagiotou, E. M. Nahum, and V. Pappas, “Configuring dhcp
leases in the smartphone era,” in Proceedings of the 2012 ACM confer-
ence on Internet measurement conference. ACM, 2012, pp. 365–370.

[6] H. Wang, J. Wang, W. Dang, J. Xue, and F. Li, “Squeezing the gap:
An empirical study on dhcp performance in a large-scale wireless
network,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1628–1636.

[7] M. Khadilkar, N. Feamster, M. Sanders, and R. Clark, “Usage-based
dhcp lease time optimization,” in Proceedings of the 7th ACM SIG-
COMM conference on Internet measurement. ACM, 2007, pp. 71–76.

[8] F. Li, X. Wang, J. Cao, R. Wang, and Y. Bi, “How dhcp leases meet smart
terminals: Emulation and modeling,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 56–68, 2018.

[9] M. Patrick, “Dhcp relay agent information option,” 2001.
[10] S. Glass, T. Hiller, S. Jacobs, and C. Perkins, “Mobile ip authentication,

authorization, and accounting requirements,” Tech. Rep., 2000.
[11] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip ad-

dress anonymization: Measurement-based security evaluation and a new
cryptography-based scheme,” in Network Protocols, 2002. Proceedings.
10th IEEE International Conference on. IEEE, 2002, pp. 280–289.

[12] K. Sui, Y. Zhao, D. Pei, and L. Zimu, “How bad are the rogues’ impact
on enterprise 802.11 network performance?” in Computer Communi-
cations (INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp.
361–369.

[13] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-
tail distributions to analyze network performance models,” Performance
evaluation, vol. 31, no. 3-4, pp. 245–279, 1998.

[14] X. Chen, L. Lipsky, K. Suh, B. Wang, and W. Wei, “Session lengths and
ip address usage of smartphones in a university campus wifi network:
Characterization and analytical models,” in Performance Computing and
Communications Conference (IPCCC), 2013 IEEE 32nd International.
IEEE, 2013, pp. 1–9.

[15] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Character-
ization of wireless multidevice users,” ACM Transactions on Internet
Technology (TOIT), vol. 16, no. 4, p. 29, 2016.

[16] P. Francois, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in ospf networks,” in INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE. IEEE,
2007, pp. 89–97.

[17] F. Clad, P. Mérindol, S. Vissicchio, J.-J. Pansiot, and P. Francois,
“Graceful router updates in link-state protocols,” in 2013 21st IEEE
International Conference on Network Protocols (ICNP). IEEE, 2013,
pp. 1–10.

[18] X. Wei, N. Valler, H. V. Madhyastha, I. Neamtiu, and M. Faloutsos, “A
behavior-aware profiling of handheld devices.” in INFOCOM, 2015, pp.
846–854.

[19] X. Wei, N. C. Valler, H. V. Madhyastha, I. Neamtiu, and M. Faloutsos,
“Characterizing the behavior of handheld devices and its implications,”
Computer Networks, vol. 114, pp. 1–12, 2017.

[20] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Exploring
human mobility with multi-source data at extremely large metropolitan
scales,” in Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, 2014, pp. 201–212.

[21] B. Alipour, L. Tonetto, A. Y. Ding, R. Ketabi, J. Ott, and A. Helmy,
“Analyzing mobility-traffic correlations in large wlan traces: Flutes vs.
cellos,” arXiv preprint arXiv:1801.02705, 2018.

[22] C. Miao, J. Wang, H. Wang, J. Zhang, W. Zhou, and S. Liu, “A multi-
dimension measurement study of a large scale campus wifi network,”
in 2018 IEEE 43rd Conference on Local Computer Networks (LCN).
IEEE, 2018, pp. 351–359.


