
1

An Adaptive Online Scheme for Scheduling and
Resource Enforcement in Storm

Shengchao Liu12, Jianping Weng12, Jessie Hui Wang12, Changqing An12, Yipeng Zhou3, Jilong Wang12
1Institute for Network Sciences and Cyberspace, Tsinghua University, China

2Beijing National Research Center for Information Science and Technology, China
3Department of Computing, Macquarie University, Australia

Abstract—As more and more applications need to analyze
unbounded data streams in a real time manner, data stream
processing platforms, such as Storm, have drawn attention of
many researchers, especially the scheduling problem. However,
there are still many challenges unnoticed or unsolved. In this
paper, we propose and implement an adaptive online scheme
to solve three important challenges of scheduling. First, how to
make scaling decision in a real time manner to handle fluctuant
load without congestion? Second, how to minimize the number
of affected workers during rescheduling while satisfying the
resource demand of each instance? We also point out that stateful
instances should not be placed on the same worker with stateless
instances. Third, currently the application performance cannot
be guaranteed because of resource contention even if the com-
putation platform implements an optimal scheduling algorithm.
In this paper, we realize resource isolation using Cgroup, and
then the performance interference caused by resource contention
is mitigated. We implement our scheduling scheme and plug it
into Storm, and our experiments demonstrate in some respects
our scheme achieves better performance than state-of-the-art
solutions.

Index Terms—resource allocation, scheduling, stream process-
ing, Storm.

I. INTRODUCTION

Nowadays, various sources such as hardware sensors or
software applications are producing continuous data streams of
large volume. People from industry and academia would like
to be able to collect and analyze these data streams to retrieve
valuable knowledge or detect anomalies in a real time manner
[1] [2]. Therefore, in these years many stream processing
programming models and computation platforms are proposed,
such as STREAM [3], Borealis [4], System S [5], StreamBase
[6], InfoSphere Streams [7], S4 (Simple Scalable Streaming
System) [8], D-Stream [9], Storm [10], Flink [11], Heron [12],
and Samza [13]. In most current streaming systems, in order
to run an application, one user needs to represent the logic of
the application as a directed acyclic graph (DAG) and specify
its requirement. An application DAG is a set of interconnected
operators, with each operator encapsulating the semantic of a
specific operation, e.g. receiving incoming tuples, conducting a
computation, or generating new outgoing tuples. The directed
edges in the DAG indicate how the tuple streams are routed
to be processed. If the user code of an operator is to compute
a result for multiple tuples it receives, the operator needs to
maintain some states when it is running, therefore it is defined

Corresponding author: J.H. Wang (jessiewang@tsinghua.edu.cn).

as a stateful operator. Otherwise, the operator is defined as a
stateless operator.

The DAG models an application logically. In the physical
layer, for parallel execution, each operator needs to be appro-
priately replicated in multiple instances that split and process
the arriving tuples simultaneously. The number of instances
is referred to as the parallelism degree of the operator. These
instances are executed in one or multiple worker processes on
multiple physical machines, i.e. worker nodes.

The capacity of one streaming application, i.e. the maximum
data rate it can handle without congestion, can be affected by
many factors, such as the parallelism degree of each operator,
the capacity of each instance, and the assignment of each
operator instance to workers and worker nodes. Since the
data stream may arrive at the application at a fluctuant rate,
naturally we would like to see the capacity of the application
can adapt dynamically to the real-time rate of the data stream.
In other words, it is valuable for a streaming processing
platform to incorporate an automatic and dynamic adaptive
scheduling and enforcement algorithm to determine all the
factors mentioned above to guarantee the performance of
applications and exploit resources of physical infrastructure
efficiently.

The scheduling problem has drawn attentions from many
researchers. However, the problem has not been well solved
yet. For example, currently Storm is not able to adjust the
capacity of its applications according to their data arrival
rates automatically and adaptively. Although Storm users can
set parallelism degrees for operators in their topologies using
APIs at runtime, there are several problems. First, it is not
transparent to Storm users, i.e., users need to run the API
frequently by themselves to change the configuration of their
applications. Second, Storm users may not be aware of the
optimal parallelism degrees, and the assumption frequently
used here by researchers, i.e. the capacity is linear with
parallelism degree, may not be true. Third, the assignment
of instances to workers and worker nodes is done by the
default scheduler EvenScheduler of Storm periodically each
10 seconds, but the scheduler just assigns executors to the
configured number of workers in a round-robin manner with
the aim of producing an even allocation, which may not be
efficient. Forth, during migrations caused by re-scheduling,
the application performance would degrade and the migration
cost must be considered. Furthermore, applications of different
Storm users may have resource contention, which means their



2

application performance cannot be guaranteed.
In this paper, we propose an adaptive online scheme for

scheduling and resource enforcement on streaming processing
frameworks. In particular, we make the following contribu-
tions.
• Our scheme can make scaling decisions, i.e. determining

the amount of resources needed by each instance, in a
more timely manner to handle unexpected spikes of load
without congestions and resource wastes.

• We pinpoint that instances of stateful operators and state-
less operators should not be colocated at the same worker
in current implementations of pause-resume migration
approaches, and we propose a resource-cost-aware place-
ment algorithm that minimizes the number of affected
workers.

• Our scheme can enforce the resource allocation decisions
made by our scheduler and mitigate performance interfer-
ence caused by resource contention by isolating instances
using Cgroup [14].

We design our scheduler, implement and integrate it into
Storm. Experiments based on a popular topology WordCount
and a realistic application demonstrate that our algorithm
can adapt the capacity of one topology to its stream data
arrival rate and produce scheduling and deployment strategies
that achieve better performance, e.g. shorter completion time,
larger throughput and less loss tuples, compared to some state-
of-the-art solutions.

The remaining part of the paper is organized as follows.
Section II presents an overview of previous related work.
Section III describes the scheduling problem formally, and
introduces the framework and algorithms of our scheme. In
Section IV, we describe how we implement our scheme
on Storm, especially how we monitor the running status of
topologies and how we guarantee isolation using Cgroup. In
Section V, we conduct experiments using WordCount topology
and a realistic application topology and present various perfor-
mance statistics. We also demonstrate the necessity of resource
isolation by running an experiment. Section VI concludes our
work.

II. RELATED WORK

In recent years, the scheduling problem has drawn the
attention of many researchers, and there have been some
research efforts to revise the scaling and deployment of
topologies periodically at runtime, with the goal to optimize
performance for stream processing applications with fluctuant
loads. We summarize these research efforts from the following
three aspects of the scheduling problem, i.e., scaling decisions,
placement strategies and migration issues.

Scaling Decisions. As the arriving load fluctuates, the
amount of resources allocated to the streaming processing
application should adapt to the load to ensure that the process-
ing performance is acceptable while the resources are utilized
efficiently. Current works differ from each other in terms of
scaling dimensions and the method to determine the proper
scaling decision.

Many works try to scaling in or out by adjusting the number
of replications, i.e. parallelism degree [15][16][17][18]. The

authors of [15] focus on IBM’s System S and make its
operators to be scalable. In [16], the authors calculate the
required parallelism degree for each component based on the
estimation of its current capacity and the prediction of data
arrival rate in the next time window. In [17], once an operator
is found to be a potential bottleneck, the system would try to
increase the number of tasks by 1 for the operator. In [18],
if the estimated CPU usage per replication of one operator is
beyond a predefined threshold region, its parallelism degree
would be reconfigured.

There are also some other scaling dimensions. In [19], the
authors propose a topology-based scaling mechanism. When a
topology is overloaded, it scales by adjusting the number of the
cloned topologies or replaced by another new topology with
more tasks. In [20], the authors regulate the number of used
cores and the CPU frequency through the DVFS (Dynamic
Voltage and Frequency Scaling) function offered by modern
multicore CPUs.

The reconfigurations of parallelism degrees would cause
restarts of involved workers and degrade the application per-
formance. The topology substitution method would also result
in a long unavailable time period. Furthermore, because of
resource contention, it cannot be guaranteed that the applica-
tion performance is improved as expected when they adjust
parallelism degrees of operators or topologies. In fact, it is
regarded to be hard to formally model the resource contention
among operators or topologies [17].

The scaling of the CPU frequency proposed in [20] is only
suitable for the case in which the underlying architecture is
dedicated to the execution of one elastic parallel operator. It
cannot work if more than one operators or multiple applica-
tions are sharing the resources.

In this article, our scaling dimension is the resources allo-
cated to each replication. Storm version 1.1.1 has integrated
a resource-aware scheduler R-Storm, which enables Storm
users to specify the resource demand of each task [21].
However, the resource demand should be specified before the
topology is started, and it cannot be tuned during running.
Furthermore, R-Storm cannot guarantee that each component
really gets the specified demand during running. In our work,
we exploit Cgroup [14] to isolate instances of components.
Our solution can mitigate interferences caused by resource
contention among workers and executors, and it can work well
for streaming applications running on shared infrastructure
such as public clouds.

The method to determine the proper scaling decision can
be based on profiling approaches [17][18] or analytical models
[20][22]. In [17] and [18], the authors exploit the profiling ap-
proach to build the relationship between resource provisioning
and performance metrics of application. The profiling results
are then used to evaluate different scaling configurations,
and the best configuration would be selected. In [20] and
[22], the authors predict the performance metrics, e.g. mean
service time and mean waiting time, under different resource
provisioning using queueing theory. Profiling is argued in [17]
to be able to provide more reliable results via real experiments
than analytical abstract models. But the profiling phase takes
time.



3

Similar to [16], we predict the future load of one operator
using two models, i.e. the regression of its load in previous
sliding windows and the load of its parent operators. How-
ever, [16] just assumes that the capacity of one component
increases linearly with its parallelism degree, and it does not
consider that the amount of resources each replication really
acquires may also vary as the parallelism degree changes,
while we calculate the resource demand of each replication
directly and enforce the allocated resources of each replication
using Cgroup. Comparing to the profiling approaches and the
queueing theoretic models, our method can adapt to strongly
fluctuating load in a more timely manner. The profiling or
modelling results can be integrated into our scheme if desired,
and the integrated schemes can also enjoy the benefits brought
by scaling resources per replication and isolating resource
allocations using Cgroup.

Besides calculating resource demands, there are some other
issues in making scaling decision. For example, in [23], the
authors want to find the right point in time to scale in/out. In
[24], the authors focus on the application of spatial preference
queries and point out that the auto-scaling system should
be with a two-level architecture to cope with fluctuations of
different time-scales.

Placement Strategies. The replications of operators should
be placed on available physical servers to be executed, and
how to place them also impacts the application performance. In
summary, placement strategies can be resource-aware, traffic-
aware, and cost-aware.

Resource-aware means that only physical servers with suf-
ficient resources are considered when we place a replication.
In addition, some placement strategies would like to see that
the load is spread evenly among servers, while some other
strategies would like to minimize the number of occupied
servers. Traffic-aware means that we always want to minimize
the latency caused by transferring tuples from one operator
to its child operators. Basically, inter-node communication is
slower than inter-process communication, which is slower than
intra-process communication. Cost-aware means we should
consider the cost caused by moving replications or operators
from one place to other places.

Many placement strategies are both resource-aware and
traffic-aware [25][26][21][27][28]. In [25], Aniello et al. notice
that in some topologies where the computation latency is
dominated by tuples transfer time, limiting the number of
tuples that have to be sent and received through the network
can contribute to improve the performances. Therefore, they
propose to place in the same worker executors that communi-
cate each other with high frequency. The authors of [26] sort
executors by their loads and solve the minimization problem
for each executor one by one to find its server to minimize
inter-node and inter-process traffic while ensuring no worker
node is overloaded. They argue there should be a single
worker on one worker node for one topology. It may minimize
communication traffic, but it places stateful executors and
stateless executors on the same worker, which brings out a
negative effect of unnecessary restarts of stateful executors. In
[21], the authors select the node with the smallest Euclidean
distance, which is defined based on resource demand of

the replication, resource availability of the target node, and
the bandwidth between the target node and the predefined
Ref node. In [27], the authors formulate an Integer Linear
Programming problem which takes explicitly into account the
heterogeneity of computing and networking resources. In [28],
the authors formulate a Mixed-Integer Linear Program to find
the placement that minimizes the load imbalance among nodes,
and they also exploit heuristics to colocate two replications
with most frequent communications.

If the placement is re-evaluated and revised periodically, the
cost of re-assignment should be considered. As an instance
is migrated from its current worker to a new worker, both
involved workers must be restarted in Storm, and we need to
pause the streams directed to the migrating instance and save
the tuples in transit, so to replay them as soon as the migration
is completed. Of course during migration the application
performance degrades. The migration cost would be more
severe if the migrating instance is for a stateful operator,
because we have to extract the current state from the old
instance and restore it within the new instance. Furthermore,
the sequence of migrations must be designed carefully when a
placement transition involves migrations of multiple instances
or operators [29].

The migration of executors draws attentions of researchers,
but they mainly focus on how to guarantee that the migration
is completed in a non-destructive way and all states of the
bolt should be preserved [30][31][32][33][34]. The work [30]
is published in 2004, and it studies the migration problem
of a database stream query engine. Roughly speaking, the
migration methods can be classified into two categories. The
first category exploits a pause-and-resume approach that would
block execution during migration[31][32]. In [26], the authors
propose to introduce certain delay to ensure old workers are
not stopped until new workers are ready, which is helpful
for smooth migration procedure. The second category tries to
avoid any pause by maintaining more states, which requires
more overhead. In either category of methods, the migration
would degrade application performance. In [33], the authors
focus on SDF (synchronous data flow) based stream programs
and propose a suite of compiler and runtime techniques for
live reconfiguration without periods of zero throughput. In
[34], the authors propose two different migration approaches
and conduct experiments to study their performance. However,
in [35], the authors study five well-known frameworks and
find that none of these frameworks has not addressed all of
the issues in state management. Therefore we should avoid
unnecessary migrations, especially the instances of stateful
operators.

Some research efforts on scaling and placement are cost-
aware, i.e. taking migration cost into consideration. In [28],
the authors assume that the migration cost of one executor
is linear with the size of its state. By adding a constraint
in the formulated optimization problem, they ensure that the
total migration cost is less than a pre-defined threshold. In
[36], the authors combine the different costs into a single cost
function, such as reconfiguration cost, performance penalty
and resource cost, and then the estimated cost and prospective
benefit of the reconfiguration are used to update the Q function



4

in their reinforcement learning approach. Cardellini et al.
also investigate the problem of how to minimize migration
cost while satisfying the application requirements [37]. They
formulate an optimization problem which aims to optimize a
weighted sum of the normalized QoS attributes including the
downtime.

In this work, we just try to minimize the number of
affected workers, especially the workers of stateful instances.
We design two algorithms to determine how to deal with
overloaded nodes and how to scale in.

There are some works focusing on the placement problem
in slightly different scenarios. The authors of [38] focus on
QoS-aware operator placement in geographically distributed
Storm which is operating in a dynamic environment, and they
propose a hierarchical distributed architecture. In [39], Xu Le
et al. propose a scheme named Stela to solve the deployment
optimization problem when a Storm user wants to add or
remove servers (worker nodes). The operator placement issue
also appears in Mobile Distributed Complex Event Processing
(DCEP) systems. In such systems, there are more challenges
caused by mobility, such as limited energy and moving data
producer or consumers [40].

III. SCHEDULING PROBLEM AND SOLUTION

In the logical layer, users need to specify each of their
applications as a directed acyclic graph (DAG) and submit the
DAG to the processing framework. Each DAG can be denoted
as G(N,E, T ), wherein N represents the set of all operators
in this application, E is the set of all directed edges in G,
and T is a vector which includes the number of tasks for each
operator. Let us assume Ns and Nt are two operators, i.e.
Ns, Nt ∈ N . The edge from Ns to Nt is denoted by Es,t, and
Es,t ∈ E indicates that tuples outputted from Ns would be
routed to Nt for further processing. The numbers of tasks for
Ns and Nt are specified in Ts and Tt. All these information
should be specified by users before the application is started
and cannot be changed during running.

After the application is submitted, in the physical layer, it
is the responsibility of the streaming processing framework
to determine how to schedule and execute all the tasks on
its available servers, where each server is a worker node
with limited resources. In this work, we focus on computing-
intensive applications, therefore we mainly consider CPU
resources. The problem of finding a solution to schedule and
execute all the tasks on its available servers is referred to as the
scheduling problem. Each streaming processing framework has
one or multiple schedulers to take the responsibility of solving
the problem.

Let us take Storm as an example to illustrate the physical
layer. As shown in Figure 1, in Storm, each worker node is
configured with a limited number of slots, which are basically
ports used by workers to receive messages. The number of
slots on each server is pre-configured by Storm operators and
cannot be changed after Storm is launched. Typically, it can
be set to the number of cores on the server. Each worker must
be mapped to a slot to receive message, therefore the number
of slots is in fact the maximum number of workers that can

be run on this worker node. Please note that there can be
multiple topologies running on Storm and the limited number
of slots are partitioned by the workers of all these topologies.
One topology G can spawn arbitrary number of workers on a
worker node, as long as the topology can get free slots. Each
worker spawns a number of executors to run the tasks. Each
task corresponds to only one executor, but one executor can
contain one (by default) or multiple tasks of one operator. We
can see that the number of executors has to be smaller than
or equal to the number of tasks, otherwise there would be
executors without tasks to execute. As a result, Storm users
always tend to overestimate the number of tasks when they
specify topologies in order to make sure they can increase the
number of executors without modifying their topologies when
necessary.

Fig. 1. One worker node in Storm.

Since both the arriving load and running environment can
be dynamic, one streaming processing framework may need
to change its scheduling decision to optimize the application
performance periodically.

After rescheduling, some instances might be assigned to
workers/nodes different from the previous assignment. It is
called as migrations. The application may suffer performance
degradation during migrations, i.e., some instances become
unavailable due to restarts. Therefore we should reduce the
number and influence of migrations as much as possible.

In order to develop algorithms to solve the scheduling
problem, we should understand the factors that can affect the
running performance of one streaming application. Two key
factors are listed as follows.

1) the number of instances for one operator and the amount
of resources allocated to each instance.
It is referred to as scaling decision in this paper. There
are some constraints when we make scaling decision.
The number of instances for one operator has to be
smaller than or equal to the number of tasks specified
by the DAG. Each instance can use only one CPU core
at most. Roughly speaking, in this work we propose
to spawn the maximum number of instances to enable
the largest amount of resources for future uncertainty
and adjust the resources per instance dynamically to
accommodate fluctuating loads. We also point out the
resource allocation per instance should be enforced
to guarantee the system is running as expected in a
resource-aware scheduling scheme.



5

2) the assignment/placement of each instance to workers
and worker nodes.
It is referred to as placement decision in this paper.
There are at least three considerations during placement,
i.e., each instance must be able to acquire sufficient
resources, the migrations caused by rescheduling should
also be minimized, and the cost caused by communica-
tion among instances should be minimized if possible.
The consideration about communication cost makes us
to propose to use least worker nodes and workers,
as long as the worker nodes can provide sufficient
resources.

Based on the above analysis, we design our algorithms to
make scaling decision and placement decision.

A. Scaling Decision

We compute our scaling decision periodically. At ti, we col-
lect the data of running status during the (i−1)th timeslot, i.e.
[ti−1, ti]. Now we need to predict the number of tuples each
operator needs to process during ith timeslot [ti, ti+1] and
then derive the amount of resources each operator demands
during this timeslot.

1) Load Prediction: It is a usual way to predict the future
load of an operator Cj from its loads in previous φ timeslots
with a linear regression model. Let us assume the arrival rate
of tuples to Cj in timeslot k is Ljk. Mathematically, at ti,
we compute the linear coefficients aji and bji by applying the
linear least squares method as follows:

(aji , b
j
i ) = argmin

a,b

i−1∑
k=i−φ

(Ljk − (a× tk + b))2.

Let us define the predicted value of Lji as L̄ji . We compute
L̄ji as follows:

¯
Lji ≈ a

j
i × ti + bji .

Basically, here we assume the variation of load during
the timewindow [ti−φ, ti−1] is similar with the variation of
load during the timewinow [ti−φ+1, ti], which is a kind of
self-similarity. Many traffic time series in the Internet exhibit
characteristics of self-similarity [41] [42] [43] [44].

The above method provides an acceptable way to predict
future values when we have no more information about future.
For operators except spouts (i.e. operators receiving tuples
from data sources), it is possible for us to predict more accu-
rately based on more available information. We say that Cp is
a parent operator of an operator Cj if tuples outputted from
Cp would be routed to Cj for further processing. Basically,
it can be noticed that the incoming tuples to one operator are
in fact outputted by all of its parent operators. We know that
by default a tuple would be considered to be failed if it is not
completed by the whole topology within 30 seconds. From it,
we can see that in most cases the time period one tuple stays
in one operator would not be long. Therefore, we have the
following approximation for each non-spout operator Cj :

L̃ji =
∑
Cp∈Pj

(ψpi ∗ ρ
p
i ),

where ψpi = Lpi + δ
p

i .

(1)

Here, Pj is the set of all parent components of Cj . ψ
p
i is the

number of tuples Cp needs to process in the timeslot i, which
can be calculated as the prediction of Cp’s incoming load plus
the length change of its pending queue, i.e., Lpi +δ

p

i . The upper
equation means that the number of incoming tuples to Cj is
the sum of tuples produced by all Cj’s parent operators. ρpi is
the average number of tuples Cp emits to next operators for
each tuple it processes during [ti, ti+1]. Therefore, the number
of tuples Cp sends to its child operator Cj can be calculated
as ψpi ∗ ρ

p
i .

There are two important variables in the equation, δ and ρ,
and we estimate their values using the average of historical
measurements as follows:

ρpi ≈
∑i−1
k=i−φ ρ

p
k

φ

δ
p

i ≈
∑i−1
k=i−φ δ

p
k

φ
.

In order to avoid congestions as much as possible, we
propose to use the maximal value between ¯

Lji and L̃ji as the

final prediction of load, i.e., Lji = max(
¯
Lji , L̃

j
i ).

2) Resource Demand: Statistically, for an operator of a
computation-intensive application, its capacity, i.e., the number
of tuples it processes, is linear with the amount of CPU re-
sources it utilizes. Let Rjk denote the amount of CPU resources
Cj utilized during kth timeslot, which can be monitored using
Cgroup as described later. We have known that the number of
tuples Cj has processed in this timeslot is ψjk from monitoring.
Therefore, we can estimate the linear coefficient, i.e., the
average CPU resources that Cj utilizes to process one tuple
during recent φ timeslots, as follows:

κji ≈
∑i−1
k=i−φ (Rjk/ψ

j
k)

φ
(2)

Therefore, the CPU demand of Cj in the timeslot i can be
calculated as

Rji = ψji × κ
j
i . (3)

The operator Cj has Tj instances, therefore rji , the amount
of resources that each instance requests, is as follows:

rji =
Rji
Tj

(4)

Allocating exactly the resource share of rji to instances may
result two potential issues. As a queue system with a huge
number of tuples, the system tends to be less stable if the
utilization rate keeps 100 percents. Furthermore, in terms of
queue length, small deviations from theoretical ideal values
are normal in a practical environment. It would result in



6

unnecessary minor changes of resource demand. Therefore,
we adjust rji in the following ways before enforcement.

First, we increase the resource share aggressively but de-
crease conservatively. If rji is larger than rji−1, we immediately
implement rji . Otherwise, we stay at rji−1 as long as the
accumulated decrease is less than θ/2. Second, we always
assign a little more resources to each executor to improve the
stability of the system. In details,

r̂ji =

⌈
rji + θ

2

θ

⌉
× θ. (5)

It can be viewed as we use θ percent of a single CPU core
as the granularity of resource allocation. Roughly speaking,
decreasing the granularity of resource allocation should be
beneficial for reducing resource waste, but increase the risk
of instability in extreme cases. θ can be set according to the
maximum acceptable (affordable) resource waste per instance.

3) The Enforcement of Resource Allocation: It is still a
problem whether the instance can get its allocation share
during running, because there are many instances from one
topology or multiple topologies on one worker node and these
instances are competing for resources. Therefore, we have to
enforce our allocation and avoid the uncertainty caused by
resource contention. We know that Cgroup can control and
monitor the resource usage of all threads. We propose to
use Cgroup to make sure that any instance cannot use more
resources than its allocation share. Since all instances only use
their own shares, performance interference caused by resource
contention can be removed.

B. Placement Considering Resource and Migration

Now we need to decide the placement of these instances
of different operators, i.e., the mapping of each instance to
worker node and worker.

There are two cases in which the placement should be
revised. First, some nodes would be overloaded in ti due to the
increasing demand of their own instances. Second, the number
of nodes can be reduced due to the decreasing total demand
of instances. Roughly speaking, the first case happens when
the arriving load is becoming heavier, while the second case
happens when the arriving load is becoming lighter.

The revision of placement would result in migration of
some instances. As one instance is migrated, its source worker
and destination worker would be restarted, and the application
performance would degrade. Such kind of migration cost must
be considered, therefore we should determine the placement
of ti based on its placement of ti−1 and try to minimize the
number of affected workers.

Furthermore, the migration of stateful instances takes longer
time than migration of stateless instances [32], because their
states have to be saved and restored before and after migrations
[45] [46]. Therefore, we should try to avoid migrations of
stateful instances.

Besides the above consideration, there are some research
efforts that have pointed out we should reduce the unnecessary
inter-node and inter-process communications to improve the
performance of one topology [26]. Therefore the total number

of nodes/workers should be minimized. As a result, we pro-
pose that there should be two workers on one worker node for
one application, one for stateful instances and one for stateless
instances. In [26], in order to minimize communication cost,
the authors suggest that there should be only a single worker
on one worker-node. Considering the following scenario. One
stateless instance e1 needs to be migrated to other nodes, and
this migration oughts to be a stateless migration. However,
stateful instances are also placed on the same worker as
e1, which makes the migration turning to a costly stateful
migration. Our proposal can avoid such kind of unnecessary
stateful migrations.

In summary, we propose the following placement guide-
lines.

1) an instance can be placed on one node only if the node
can provide sufficient resources;

2) there should be two workers on one node, for stateful
and stateless instances separately, in order to avoid
unnecessary stateful migrations;

3) the number of affected workers should be minimized
during revising the placement;

4) the number of used nodes should be minimized, to
minimize monetary cost and also the communication
cost.

Based on these guidelines, we propose heuristic algorithms
to make the placement decision. Algorithm 1 is to deal with
instances that cannot get sufficient resources without migra-
tion. Algorithm 2 presents three important functions invoked
by Algorithm 1 to find suitable target workers for migrations.
Algorithm 3 is to find whether the number of used nodes can
be reduced. We explain our ideas in these algorithms detailedly
as follows.

1) migration due to overload: For an overloaded node,
at least one worker would be affected to move out some
instances. We try these possible plans in sequence, i.e., dis-
rupting its stateless worker, disrupting its stateful worker,
or disrupting both workers. We can see that we prefer to
disrupting stateless workers when necessary and we prefer to
disrupting only one worker than two workers for one node.

After all overloaded nodes are checked, we can get a list of
disrupted workers caused by overload directly. The resources
of these disrupted workers are assumed to be released and we
will determine their placement locations and allocate resources
for them later. The next problem is where to place these
disrupted instances to solve the resource shortage.

We first try to avoid affecting any other workers. If a
node currently has no stateful (stateless) worker, or its stateful
(stateless) worker is in the list of disrupted workers, it would
be a good target for placing stateful (stateless) instances since
no extra worker is disrupted. It is shown as the function
FindZeroAffected() in our algorithms.

Then we try the case in which only the target worker is
disrupted, which is shown as the function FindOneAffected().
The target worker should be also be added to the list. Note
that for one node, we do not move a worker out to make room
for the other worker to accommodate more instances, since in
this case two workers are disrupted. As the last step, if we



7

still need more resources, we have to scale out and use more
nodes, which is shown as the function FindFreeNodes().

Now we have found sufficient resources, and we can place
all instances of disrupted workers. In this step, we sort
migrated instances by breadth-first search of the DAG and
place sorted instances in sequence. In this way, neighboring
instances are likely to be placed closely. In this article, we
focus on computation-intensive applications in which commu-
nication cost minimization is with low priority.

2) try scale in: In each period, we check if the number
of used nodes can be reduced. We iteratively check the least
loaded node and see if we can move its workers and merge
them with workers on other nodes. Note that in order to limit
the migration cost, we would select only one target worker for
one migrated worker.

Algorithm 1 Migrating Instances on Overloaded Nodes
n.sl and n.sf denote the stateless worker and stateful worker of node
n. D(w) denotes the resource demand of worker w.

1: //step 1: find disrupted workers due to overload.
2: for n ∈ usedNodes do
3: if D(n.sl) +D(n.sf) > Rn then // n is overloaded
4: if D(n.sf) < Rn then
5: migrateSL.add(n.sl)
6: else if D(n.sl) < Rn then
7: migrateSF.add(n.sf)
8: else
9: migrateSL.add(n.sl)

10: migrateSF.add(n.sf)

11: RTotalsl ←
∑

∀w∈migateSL D(w)

12: RTotalsf ←
∑

∀w∈migateSF D(w)
13: //step 2: find target workers.
14: FINDZEROAFFECTED(RTotalsf , RTotalsl)
15: if RTotalsf > 0 or RTotalsl > 0 then
16: FINDONEAFFECTED(RTotalsf , RTotalsl)
17: if RTotalsf > 0 or RTotalsl > 0 then
18: FINDFREENODES(RTotalsf , RTotalsl)
19: //step 3: assign disrupted instances to usable

nodes.
20: orderedInstances ← sort instances of migrateSF and

migrateSL by bread-first search on DAG
21: orderedNodes← sort nodes by nodeID
22: for e ∈ orderedInstances do
23: place e on the first node with usable and sufficient resources

IV. IMPLEMENTATION IN STORM

In this section, we would introduce how we implement our
scheduler in Storm. Figure 2 presents the architecture of our
implementation. It is mainly composed of four modules, i.e.,
topology monitoring, scaling decision, placement decision, and
resource monitor and enforcement.
• topology monitoring: it monitors the realtime demand and

performance of the topology (application) and collects
data to learn its running status, such as the incoming data
rate, outgoing rate, execution time of tuples, and internal
structure etc.

• scaling decision: based on the data collected, it computes
the amount of resources demanded by instances.

• placement decision: it is responsible for assigning in-
stances to slots on servers.

Algorithm 2 Find target workers to acquire resources to
deal with overloaded servers.

1: function FINDZEROAFFECTED(RTotalsf , RTotalsl)
2: for n ∈ usedNodes do
3: // stateful demand first
4: if RTotalsf > 0 and (n.sf = NULL or n.sf ∈

migatedSF ) then
5: if n.sf = NULL then
6: CREATEWORKER(n.sf )
7: migrateSF.add(n.sf)

8: CpuAcquire = min(RTotalsf , n.remainingRes)
9: update RTotalsf and n.remainingRes

10: // now stateless demand
11: if RTotalsl > 0 and (n.sl = NULL or n.sl ∈

migatedSL) then
12: do the similar thing for stateless demand
13:
14: function FINDONEAFFECTED(RTotalsf , RTotalsl)
15: for n ∈ usedNodes do
16: if RTotalsf > 0 and n.remainingRes > 0 then
17: migrateSF.add(n.sf) // n.sf would be affected.
18: update RTotalsf and n.remainingRes accordingly
19: do the similar thing for stateless demand
20:
21: function FINDFREENODES(RTotalsf , RTotalsl)
22: for n ∈ notUsedNodes do
23: if RTotalsf > 0 and n.remainingRes > 0 then
24: create and migrateSF.add(n.sf)
25: update RTotalsf and n.remainingRes accordingly
26: do the similar thing for stateless demand

Algorithm 3 Try scale in to minimize the number of used
servers.
The scheduler executes this algorithm to update the placement
according to the predicted resource demands of executors.

1: while True do
2: n ← the least loaded node //n is the node with the

highest possibility to be removed
3: orderedUsedNodes ← sort nodes by their remaining re-

sources in ascending order
4: for n′ ∈ orderedUsedNodes do
5: if n′ 6= n and n′.remainingRes > D(n.sl) then
6: targetSL = n′.sl
7: update n′.remainingRes accordingly
8: if n′ 6= n and n′.remainingRes > D(n.sf) then
9: targetSF = n′.sf

10: update n′.remainingRes accordingly
11: if targetSL 6= 0 and targetSF 6= 0 then //remove n
12: place n.sf on targetSF
13: place n.sl on targetSL
14: else
15: return //exit because no node can be removed.

• resource monitor and enforcement: this module is re-
sponsible for enforcing the resources allocated to each
instance by the scaling decision module.

We plugin our scheduler in Storm by implementing the
IScheduler interface and modifying the storm.scheduler con-
figuration in storm.yaml to replace the default scheduler by our
scheduler. Storm has two types of processing nodes: Nimbus
and supervisor. The first three modules are running on Nimbus
node and complete their responsibilities using Nimbus APIs.
The last module, i.e. resource monitor and enforcement, should



8

Fig. 2. Architecture of Our Implementation.

be deployed on each supervisor node.
The design of our scaling decision and placement decision

algorithms has been described in Section III. This section
mainly focuses on how we monitor the running status and
enforce our scheduling decisions using Storm APIs.

A. Topology Monitoring

As we have stated, we need to understand the internal
structure of the topology under study, monitor its running,
and collect various performance statistics. The information
collected by our topology monitoring module would be used to
predict future load to find corresponding optimal scheduling
solution (in Section III) and evaluate the performance of a
scheduling algorithm (in Section V).

TABLE I
NIMBUS APIS USED IN THIS WORK

Nimbus API Functions
Cj .get inputs() all operators sending tuples to Cj .
Cj .get common() all neighboring operators of Cj .
Cj .get emitted() the number of emitted tuples by Cj .

bolt Cj .get executed() the number of tuples processed by Cj .

spout
Cj .get complete ms avg() average time a tuple stays in Storm.

Cj .get acked() the number of tuples successfully completed.
Cj .get failed() the number of tuples that timeout.

Table I lists all Nimbus APIs used in our work. Please
note that Nimbus API provides statistics from the start of the
topology to the time point when the API is invoked. Therefore,
in order to know the statistics during [ti, ti+1], we should
subtract the data collected at ti from the data collected at
ti+1. For ease of reading, we skip this step in the following
paragraphs.

1) The internal structure of the topology: We say that Cp
is a parent operator of an operator Cj if tuples outputted from
Cp would be routed to Cj for further processing. Let Pj be
the set of all parent operators of Cj , which can be get using
Nimbus API as follows,

Pj = Cj .get inputs().

In the other direction, let Cj be the set of all child operators
of Cj . We can get Cj as follow,

Cj = Cj .get common()− Cj .get inputs().

2) Statistics of Each Operator: We monitor the number
of tuples processed and the number of tuples emitted by
each operator Cj , using Nimbus API Cj .get executed() and
Cj .get emitted().

The tuples emitted by Cp would be sent to its child operator
Cj , then we can calculate the number of tuples Cj receives
as follows,

Lj =
∑
Cp∈Pj

Cp.get emitted().

Please note Lj should be monitored by injecting measure-
ment logic into the codes of instances if its parent has multiple
child operators. If tuples are arriving with a faster speed than
Cj’s capacity, some tuples would be put in Cj’s queue. We
monitor the changes of queue length as follows,

δj = Cj .get executed()− Lj .

For each incoming tuple, there might be different number
of tuples emitted after it is processed by Cj . It is determined
by the content of the incoming tuple and the code logic of the
operator. We monitor the ratio as follows,

ρj =
Cj .get emitted()

Cj .get executed()
.

3) Statistics of the Topology: In order to evaluate the
performance of different scheduling algorithms, we need to
know the running statistics of the whole topology. In this work,
we monitor its average latency (complete time), throughput
(the number of acked) and the number of timeout (failed).
Their corresponding Nimbus APIs are listed in Table I.

B. The Enforcement of Resource Allocation

We depend on Cgroup, a function provided by the operating
system (OS) of servers, to enforce the desired resource alloca-
tion computed by us. Each executor of Storm is in fact a thread
running on a JVM of one worker node. It has three identifiers,
i.e., executor ID assigned by Storm, thread ID assigned by
JVM, and thread ID assigned by the OS of the worker node.
Cgroup runs in Linux kernel and it controls the resource usage
of all threads based on thread IDs assigned by OS. However,
during running, by directly calling Java library API, Storm can
only get thread ID assigned by JVM. Then we have to develop
a function to help Storm find out the thread ID assigned by
OS for each executor.

So we choose to ask each executor to report its own thread
ID assigned by the OS. After reading the code of Storm
project, we notice that when a thread is spawned, a function
prepare of the operator is invoked [47]. We rewrite the prepare
function to include a code segment where the thread ID is
reported to our database.

Now the challenge is how one executor obtains its own
thread ID assigned by the OS correctly. The prepare function
is written in Java and runs on jvm (java virtual machine).
The API to get thread ID in Java library returns a thread
ID on the jvm, which is not the thread ID assigned by the
operating system. The way we get the thread ID assigned by



9

OS is as follows. In the prepare function, we use the JNI (Java
Native Interface) to call a function written in C programming
language, wherein we invoke the system call NR gettid to
obtain the thread ID assigned by OS. This task only needs to
be run once when the thread is spawned, so it does not affect
the performance of the topology.

After the executor reports its thread ID, the information
would be stored in the database for Cgroup to use. During
running, our scheme obtains a list of executor IDs on each
worker node using Nimbus API, finds the thread ID for each
executor ID from the database, and then controls and monitors
resource usage of the executor using its thread ID.

Figure 3 illustrates our method described above to obtain
and use thread IDs of executors for resource allocation en-
forcement. The two solid lines (with a single arrow) represent
the procedure of one executor to obtain its own thread ID and
report to database. It is invoked only once when the executor is
spawned. The two dotted lines (with double arrows) represent
the procedure of our enforcement module (Cgroup agent) to
control and monitor resource usage of executors on the worker
node. This procedure is invoked periodically.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

We implement our proposed scheduling framework in Storm
released version 1.1.1, and then we deploy the system on a
cluster with three worker nodes connected using a 1000Mbps
switch. Each worker node has two Intel Xeon E5-2620 v4
CPUs, i.e. in total each node has 16 physical CPU cores. We
assign six cores for running Storm. The memory size of each
node is 128G.

In the following experiments, our topology monitor keeps
running and collects data every 10 seconds, which is also the
time interval to run the scheduling algorithm once. φ is set
to be 5, which means we predict the load of next timeslot
from previous five time slots, i.e., 50 seconds. The scaling
granularity θ is set to be 20.

We conduct experiments to evaluate our scheduling algo-
rithm using well-known data processing application (topol-
ogy), namely WordCount Topology. As shown in Figure 4, the
topology is with a linear structure which consists of one Spout
and two Bolts [48]. The spout component is the source of data
steaming, and it receives data from Kafka by subscribing the
topic of Kafka [49] and sends lines of a text file to Split.
Split bolt splits the data it receives into words and sends these
words as tuples to Count bolt using fields grouping. Count bolt
is responsible for counting up the occurrence of each word.
Here, Spout and Split are stateless components and Count is
a stateful component.

We also conduct experiments for a more realistic application
and a real data stream. We monitor all http requests going
through the border router of one dormitory region of a campus
network. The monitor agent keeps sending tuples to our
topology, and each tuple includes the information of one
http request. The topology of our application is shown in
Figure 5. The Spout receives arriving tuples from the agent
on the router. The Retrieve component retrieves a vector of
(timestamp, destination IP) from each tuple. All vectors are

sent to each of Country, ISP, and Prefix components, which
find out the geographical location (country), service provider
(ISP) and /16 prefix of the destination IP respectively. The
Country component emits (timestamp, destination country) to
the Stat.Ctry component. Stat.Ctry counts the number of visits
to each country in a recent timeslot and predicts a “normal”
value based on historical data using the sliding window
algorithm. If the visit number to one country within the recent
timeslot is too smaller or too bigger than the normal value,
it would send the information to the Alarm component. The
component Stat.ISP and Stat.Pfx work similarly as Stat.Ctry
but focus on the visit numbers to each ISP and each prefix
respectively.

As the campus network is providing critical network service
for tens of thousands of students and staff, we are not allowed
to connect our system to the router directly. We get a collected
dataset of 33 hours of December 2017 and develop a simulator
to replay them for our experiments. Furthermore, in order to
compare different schedulers under the same load, we also
have to replay HTTP traffic.

A. Evaluation Framework and Metrics

In this work, we compare scheduling performance of our
scheme with R-Storm [21]. The main reason is that R-Storm
is the only resource-aware scheduler which has been built into
Storm. We do not compare with the default scheduler because
the default scheduler has clear disadvantages. With default
scheduler, when one user submits a topology to Storm, he
should specify the number of workers used by the topology
and the number of executors for each component. The default
scheduler would put these workers and executors evenly on
all available worker nodes, which means load balancing is the
most important consideration in its scheduling. In [26], the au-
thors have pointed out the default scheduling did not consider
the negative effect of communication traffic across nodes and
processes and always used all available nodes regardless of
workload which makes it impossible to save operational cost
and electricity cost by consolidating worker nodes. In [21], the
authors also pointed out the default scheduling disregarded
resource demands and availability and therefore it can be
inefficient at times.

In the following evaluation, the parallelism degree of com-
ponents is set to be 4 for both our scheduler and R-Storm. For
R-Storm, we simulate two cases. In the first case, we set the
resources of each executor as 30% of one CPU core, while
the resources of one executor are set to be 70% in the second
case.

We simulate fluctuations of the data streaming arrival rate
by controlling the speed of writing data to Kafka topic. We
use the following metrics to evaluate the performance of a
scheduler.
• complete time: in the past 10 seconds, the average time

each tuple takes from its arrival at spout to the time
point when the tuple is processed successfully by the last
component.

• throughput: the number of tuples that are processed
successfully in the past 10 seconds.



10

Fig. 3. Obtain Thread ID of Executors for Resource Enforcement.

Fig. 4. WordCount topology.

Fig. 5. The topology of HTTP traffic monitor and analyzer.

• number of failed: the number of tuples that are not
completed within 30 seconds (default value of Storm)
in the past 10 seconds.

• the number of workers and worker nodes the topology
used in past 10 seconds.

We depend on Nimbus APIs to collect statistics of the
above metrics every 10 seconds. The Nimbus APIs are
get complete ms avg(), get acked(), and get failed().

B. WordCount, Regular Fluctuations

0 200 400 600 800 1000 1200

time(s)

0

10

20

30

k
a

fk
a

 p
ro

d
u

c
e

r 
n

u
m

Fig. 6. Input stream with regular fluctuations.

In this experiment, the streaming rate is changing as shown
in Figure 6. During the first 5 minutes, we increase the data
rate linearly every 10 seconds; during the second 5 minutes,

we decrease the data rate every 10 seconds. The input stream
repeats these changes in the latter 10 minutes.

Figure 7 presents our experiment results of their scheduling
performance. R-Storm(equal) means we configure R-Storm’s
parameters to make each of its operator using equal resources
as our scheme. Please note in reality it is not easy for users
to specify demand properly. For clarity, we further calculate
the average of all metrics and show them in Table II.

From Figure 7 and Table II, we can see that our scheduler
clearly outperforms R-Storm(30) in terms of all three metrics.
The average complete time decreases from 13115.4ms to
7.6ms, which shows an improvement of almost 1725 times.
The throughput increases from 93897 to 140995, where the
improvement is 1.5 times. The number of failed tuples de-
creases from 4629 among 93897 to 699 among 140995, where
the improvement is about 10 times.

Allocating more resources to each executor obviously can
improve the performance of the topology. Comparing our
scheduler with R-Storm(70) and R-Storm(equal), we can see
that they have smaller number of failed tuples, but our
scheduler achieves a smaller complete time and a similar
throughput. The failed tuples of our scheme is caused by
migrations, and incorporating a loss-free migration mechanism
can solve the issue. On the other hand, R-Storm(70) consumes
much more resources than our scheme. R-Storm(70) always
allocates 70% of a CPU core to each executor, therefore it
needs 12 × 0.7 = 8.4 (3 components, each with 4 executors)
CPU cores in total during running, which means two worker
nodes are always demanded.

In terms of the number of workers and worker nodes, we
can see with our scheduler the topology only needs one worker
node and two workers during most of the running time. In
average, it uses 2.6 workers and 1.6 worker nodes. Using less
workers and worker nodes can reduce inter-node and inter-
process communication cost.

Figure 8 presents CPU utilizations of executors of three
components during the running of our scheduler. For executors
of one component, we plot our prediction (Equation 4), our
allocation (Equation 5), and its real utilization rate (collected
by our monitor). We can see they are trying to adapt to the
fluctuating incoming data rates.



11

0 200 400 600 800 1000 1200

time(s)

0

0.5

1

1.5

2

c
o
m

p
le

te
 t
im

e
(m

s
)

10
4

Our

R-storm(30)

R-storm(70)

R-storm(equal)

0 200 400 600 800 1000 1200

time(s)

0

1

2

3

4

tu
p
le

 p
ro

c
e
s
s
 n

u
m

b
e
r

10
5

Our

R-storm(30)

R-storm(70)

R-storm(equal)

0 200 400 600 800 1000 1200

time(s)

0

1

2

3

4

tu
p
le

 f
a
il 

n
u
m

b
e
r

10
4

Our

R-storm(30)

R-storm(70)

R-storm(equal)

Fig. 7. Performance statistics of three schedulings (Regular).

0 200 400 600 800 1000 1200

time(s)

0

10

20

30

40

50

60

70

80

c
p

u
 u

ti
liz

a
ti
o

n
(%

)

spout component

allocation prediction monitor

0 200 400 600 800 1000 1200

time(s)

0

10

20

30

40

50

60

70

80

c
p

u
 u

ti
liz

a
ti
o

n
(%

)

split component

allocation prediction monitor

0 200 400 600 800 1000 1200

time(s)

0

10

20

30

40

50

60

70

80

c
p

u
 u

ti
liz

a
ti
o

n
(%

)

count component

allocation prediction monitor

0 200 400 600 800 1000 1200

time(s)

1

1.5

2

2.5

3

w
o

rk
e

rN
o

d
e

/w
o

rk
e

r 
n

u
m

computer_num

worker_num

Fig. 8. Resource allocation and real usage of three components (Regular).

TABLE II
AVERAGE PERFORMANCE METRICS (REGULAR)

complete time throughput fail number

our method 7.6ms 140995 699

R-Strom(30) 13115.4ms 93897 4629

R-Strom(70) 23.9ms 142710 0

R-Storm(equal) 5079ms 143897 0

In summary, under regularly fluctuating incoming data
stream, our methods can adapt resource allocation to arrival
data rate, and thus it can achieve good performance with fewer
resources.

C. WordCount, Random Fluctuations

0 200 400 600 800 1000 1200

time(s)

0

5

10

15

20

25

k
a

fk
a

 p
ro

d
u

c
e

r 
n

u
m

Fig. 9. Input stream with random fluctuations.

In this experiment, the streaming rate is changing as shown
in Figure 9. Every 10 seconds, we generate a random integer
in [1, 25], which is the number of Kafka producers. In this
way, we get an input stream with random fluctuations. Figure
10 presents the experiment results of scheduling performance.
For clarity, we further calculate the average of all metrics and
show them in Table III.

From Figure 10 and Table III, we can see that our sched-
uler achieves a significant improvement comparing with R-
Storm(30) in terms of all performance metrics. Our scheduler
experiences a longer complete time than R-Storm(70), but it
has been 30 times better than R-Storm(equal). The throughput
is similar. Again, the failed tuples of our scheme is caused by
migrations, and incorporating a loss-free migration mechanism
can solve the issue. In terms of the number of workers and
worker nodes, with our scheduler the topology only needs
one worker node and two workers during most of the running
time. In average, our method uses 2.3 workers and 1.3 worker
nodes, which means it causes less inter-node and inter-process
communication cost and has a positive influence on the overall
performance, such as complete time and throughput.

TABLE III
PERFORMANCE METRICS (RANDOM)

complete time throughput fail number

our method 66.5ms 97474 1225

R-Strom(30) 14263ms 85097 2830

R-Strom(70) 4.8ms 107120 0

R-Strom(equal) 1857.1ms 106940 0

D. HTTP Monitor and Analyzer

The left plot of Figure 11 shows the number of HTTP
requests within consecutive 33 hours, which is the arriving
load of our HTTP monitor. The performance statistics of
experiments is presented in Figure 11 and Table IV.

In order to make comparison, we run R-Storm with three
different parameter settings. We first run R-Storm with all
available resources (6 cores ×3 servers) and monitor the CPU
usages during running. In this way, we can get roughly perfect
knowledge of the resource demand of each operator at any



12

0 200 400 600 800 1000 1200

time(s)

0

0.5

1

1.5

2

2.5

c
o

m
p

le
te

 t
im

e
(m

s
)

104

Our

R-storm(30)

R-storm(70)

R-storm(equal)

0 200 400 600 800 1000 1200

time(s)

0

1

2

3

tu
p

le
 p

ro
c
e

s
s
 n

u
m

b
e

r

105

Our

R-storm(30)

R-storm(70)

R-storm(equal)

0 200 400 600 800 1000 1200

time(s)

0

2

4

6

8

tu
p

le
 f

a
il 

n
u

m
b

e
r

104

Our

R-storm(30)

R-storm(70)

R-storm(equal)

Fig. 10. Performance statistics of three schedulings (Random).

06:00 12:00 18:00 00:00 06:00 12:00

time

0

2

4

6

8

10

12

in
p

u
t 

re
c
o

rd
s

104

06:00 12:00 18:00 00:00 06:00 12:00

time

0

5000

10000

15000

c
o

m
p

le
te

 t
im

e
(m

s
)

Our

R-storm(max)

R-storm(avg)

R-storm(equal)

06:00 12:00 18:00 00:00 06:00 12:00

time

0

5

10

15

tu
p

le
 p

ro
c
e

s
s
 n

u
m

b
e

r

105

Our

R-storm(max)

R-storm(avg)

R-storm(equal)

06:00 12:00 18:00 00:00 06:00 12:00

time

0

0.5

1

1.5

2

tu
p

le
 f

a
il 

n
u

m
b

e
r

105

Our

R-storm(max)

R-storm(avg)

R-storm(equal)

Fig. 11. Performance statistics of HTTP monitor and analyzer.

TABLE IV
AVERAGE PERFORMANCE METRICS (HTTP)

complete time throughput fail number

our method 499ms 545530 1881

R-Strom(avg) 8385ms 497897 17391

R-Strom(max) 154.5ms 530859 0

R-Strom(equal) 638ms 530330 0

timepoint, which can be taken as a good reference to determine
settings for R-Storm. For each operator, we calculate its
average and the maximum resource demand during running,
and we set them as parameters for R-Storm(avg) and R-
Storm(max). Then we run our scheduler and make a record of
resource allocation at any time point. We calculate the total
allocated resources for each operator and set parameters to
make R-Storm consuming the equal amount of resources as
our scheduler. This experiment is named as R-Storm(equal).

Please note here we are assuming R-Storm has perfect
knowledge on resource demand, which is impossible in real-
world. To some extend it means our evaluation has been in
favor of R-Storm. As we have stated before, although R-Storm
allows users to specify their resource demands explicitly when
they submit their own topologies, what’s the optimal value to
set is still an important challenge.

Our method does not require any knowledge of traffic load
in advance. The improvement of complete time is 1.2 times,
comparing R-Storm(equal) with our method. The throughput
is even slightly better than R-Storm(max). Due to migrations
without any special handling, the failed tuples of our scheme
is larger, but incorporating a loss-free migration mechanism
can solve the issue.

E. Necessity of Resource Enforcement
There can be multiple topologies running on one Storm

platform at the same time. Currently, Storm has no mechanism
to guarantee one topology really acquires the resources it
requests, especially when there is resource contention among
multiple topologies. That is why we propose to use Cgroup to
enforce our resource allocation scheme. With Cgroup, we in
fact implement the resource isolation among topologies.

We conduct an experiment as follows. In Storm, we run
two topologies, A and B. The input streaming of A is with a
constant rate, and we specify a sufficient amount of resources
for its executors using R-Storm. B serves as a background
topology in this experiment, and its input streaming rate is
changing dynamically. B also specifies its resource demand
using R-Storm before it is started. Our goal is to study the
influence of B’s changing load on A’s performance, i.e., the
performance interference caused by resource contention.

The resulting performance statistics of A are presented in
Figure 12. Obviously, the experiment with Cgroup achieves
a much better performance than the experiment without
Cgroup. With Cgroup, A achieves shorter complete time,
larger throughput, and less failed tuples. Furthermore, these
performance metrics are more stable than the experiment
without Cgroup.

When there is no Cgroup for resource allocation, A’s
performance varies a lot, which demonstrates its performance
is affected by B’s dynamic load. Furthermore, although A
requests a sufficient amount of resources, it still experiences a
serious latency and loss rate. It is because the resources which
are expected to be used by A are in fact taken over by B.
Therefore, resource enforcement and isolation are necessary
for us to guarantee performance of a topology.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose an adaptive online scheme to
schedule and enforce resource allocation in stream processing



13

0 100 200 300 400 500 600

time(s)

0

0.5

1

1.5

2

2.5

c
o

m
p

le
te

 t
im

e
(m

s
)

10
4

without cgroup

with cgroup

0 100 200 300 400 500 600

time(s)

0

0.5

1

1.5

2

2.5

tu
p

le
 p

ro
c
e

s
s
 n

u
m

b
e

r

10
5

without cgroup

with cgroup

0 100 200 300 400 500 600

time(s)

0

1

2

3

tu
p

le
 f

a
il 

n
u

m
b

e
r

10
5

without cgroup

with cgroup

Fig. 12. Performance statistics of A with and without resource isolation/enforcement.

systems. Our goal is to make sure that the system can achieve
good performance under fluctuant load, e.g., less congestion
under heavy load and less resource waste under light load.
Particularly, we calculate the desired resource amount of each
executor in a more accurate and timely manner by taking both
historical data rates and internal structure of the topology into
consideration. As the load fluctuates, our heuristic placement
algorithm can deal with overloaded nodes and try scale-in
properly which can minimize the number of affected workers
and used nodes. Moreover, as far as we know, we are the first
to notice the negative effect of colocating stateful executors
and stateless executors. Therefore, we pinpoint that the place-
ment algorithm should spawn two workers, instead of a single
worker, for each topology, then the migration of stateless
executors would not result in the restart of stateful executors.
We also implement a way to enforce that executors can really
acquire their resource shares allocated by our scheduler and
the performance uncertainty caused by resource contention is
mitigated.

We implement our scheduling scheme and plug it into
Storm, and our experiments demonstrate in some respects
our scheme achieves better performance than state-of-the-art
solutions. We hope our research can provide some valuable
insights into the scheduling problem of stream processing
systems. We recognize that the mechanism to support loss-
free migrations is an important research direction, since it can
significantly improve the performance of adaptive schedulers.

ACKNOWLEDGMENT

The authors thank the editors and anonymous reviewers for
taking time to review this paper and for their suggestions that
helped improve this paper. This work was supported by the
National Key Research and Development Program of China
under Grant No. 2016YFB0801302 and the National Natural
Science Foundation of China under Grant No. 61202356.

REFERENCES

[1] N. Hidalgo, D. Wladdimiro, and E. Rosas, “Self-adaptive processing
graph with operator fission for elastic stream processing,” Journal of
Systems & Software, vol. 127, pp. 205–216, 2017.

[2] M. Nardelli, M. Nardelli, M. Nardelli, and M. Nardelli, “Optimal
operator replication and placement for distributed stream processing
systems,” ACM Sigmetrics Performance Evaluation Review, vol. 44,
no. 4, pp. 11–22, 2017.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, Stream: The Stanford stream
data manager. Springer, Berlin, Heidelberg, July 2016, pp. 317–336.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The
design of the borealis stream processing engine.” in CIDR, vol. 5, no.
2005, 2005, pp. 277–289.

[5] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani, “Design, implementation, and evaluation of the linear road
benchmark on the stream processing core,” in Proceedings of the 2006
ACM SIGMOD international conference on Management of data. ACM,
2006, pp. 431–442.

[6] “TIBCO StreamBase and the TIBCO accelerator for Apache Spark,”
TIBCO Software Inc., Tech. Rep., 2017.

[7] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Ver-
scheure, H. Koutsopoulos, and C. Moran, “IBM infosphere streams for
scalable, real-time, intelligent transportation services,” in Proceedings of
the 2010 ACM SIGMOD International Conference on Management of
data. ACM, 2010, pp. 1093–1104.

[8] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proceedings of the 2010 IEEE Inter-
national Conference on Data Mining Workshops (ICDMW). IEEE,
2010, pp. 170–177.

[9] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing
on large clusters,” in Proceedings of the 4th USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342763.2342773

[10] (2013) Storm project. [Online]. Available: http://www.storm-project.net/
[11] “Apache flink,” 2018. [Online]. Available: http://flink.apache.org/
[12] “Apache heron,” 2018. [Online]. Available:

http://incubator.apache.org/projects/heron.html
[13] “Apache samza,” 2018. [Online]. Available: http://samza.apache.org/
[14] Cgroups. [Online]. Available: https://en.wikipedia.org/wiki/Cgroups
[15] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic

scaling of data parallel operators in stream processing,” in Proceedings
of the 2009 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS). IEEE, 2009, pp. 1–12.

[16] R. K. Kombi, N. Lumineau, and P. Lamarre, “A preventive auto-
parallelization approach for elastic stream processing,” in Proceedings of
the 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2017, pp. 1532–1542.

[17] X. Liu, A. V. Dastjerdi, R. N. Calheiros, C. Qu, and R. Buyya,
“A stepwise auto-profiling method for performance optimization
of streaming applications,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 12, no. 4, pp. 24:1–24:33, 2018. [Online].
Available: https://doi.org/10.1145/3132618

[18] F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni, “Elastic symbiotic
scaling of operators and resources in stream processing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 3, pp.
572–585, March 2018.

[19] C.-K. Shieh, S.-W. Huang, L.-D. Sun, M.-F. Tsai, and N. Chilamkurti,
“A topology-based scaling mechanism for Apache Storm,” International
Journal of Network Management, vol. 27, no. 3, p. e1933, 2017.

[20] T. D. Matteis and G. Mencagli, “Proactive elasticity and energy
awareness in data stream processing,” Journal of Systems and
Software, vol. 127, pp. 302 – 319, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121216301467

[21] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-Storm:
Resource-aware scheduling in Storm,” in Proceedings of the 16th Annual
Middleware Conference. ACM, 2015, pp. 149–161.

[22] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang,



14

“DRS: Auto-scaling for real-time stream analytics,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 6, pp. 3338–3352, Dec 2017.

[23] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling
techniques for elastic data stream processing,” in Proceedings of the
IEEE 30th International Conference on Data Engineering Workshops
(ICDEW). IEEE, 2014, pp. 296–302.

[24] G. Mencagli, M. Torquati, and M. Danelutto, “Elastic-PPQ:
a two-level autonomic system for spatial preference query
processing over dynamic data streams,” Future Generation Computer
Systems, vol. 79, pp. 862 – 877, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X1730938X

[25] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in Storm,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM, 2013, pp. 207–218.

[26] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-aware online
scheduling in Storm,” in Proceedings of the 2014 IEEE 34th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE,
2014, pp. 535–544.

[27] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,”
in Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, ser. DEBS ’16. New
York, NY, USA: ACM, 2016, pp. 69–80. [Online]. Available:
http://doi.acm.org/10.1145/2933267.2933312

[28] K. G. S. Madsen, Y. Zhou, and J. Cao, “Integrative dynamic recon-
figuration in a parallel stream processing engine,” in 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), April 2017, pp.
227–230.

[29] M. Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi, and R. Arif,
“TCEP: Adapting to dynamic user environments by enabling transitions
between operator placement mechanisms,” in Proceedings of the 12th
ACM International Conference on Distributed and Event-based Systems,
ser. DEBS ’18. New York, NY, USA: ACM, 2018, pp. 136–147.
[Online]. Available: http://doi.acm.org/10.1145/3210284.3210292

[30] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman, “Dynamic plan
migration for continuous queries over data streams,” in Proceedings of
the 2004 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’04. New York, NY, USA: ACM, 2004, pp. 431–
442. [Online]. Available: http://doi.acm.org/10.1145/1007568.1007617

[31] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1447–1463, 2014.

[32] V. Cardellini, M. Nardelli, and D. Luzi, “Elastic stateful stream process-
ing in Storm,” in Proceedings of the 2016 International Conference on
High Performance Computing & Simulation (HPCS). IEEE, 2016, pp.
583–590.

[33] S. Rajadurai, J. Bosboom, W.-F. Wong, and S. Amarasinghe, “Gloss:
Seamless live reconfiguration and reoptimization of stream programs,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 98–
112. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173170

[34] A. Shukla and Y. Simmhan, “Toward reliable and rapid elasticity for
streaming dataflows on clouds,” in Proceedings of 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
July 2018, pp. 1096–1106.

[35] Q.-C. To, J. Soto, and V. Markl, “A survey of state management in
big data processing systems,” The VLDB Journal, vol. 27, no. 6, pp.
847–872, Dec 2018.

[36] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, “Decentralized
self-adaptation for elastic data stream processing,” Future Generation
Computer Systems, vol. 87, pp. 171 – 185, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17326821

[37] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Optimal
operator deployment and replication for elastic distributed data stream
processing,” Concurrency and Computation: Practice and Experience,
vol. 30, no. 9, p. e4334, 2018.

[38] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “Distributed
QoS-aware scheduling in Storm,” in Proceedings of the 2015 ACM
International Conference on Distributed Event-Based Systems, 2015, pp.
344–347.

[39] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems
to scale-in and scale-out on-demand,” in Proceedings of the 2016 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2016,
pp. 22–31.

[40] F. Starks, V. Goebel, S. Kristiansen, and T. Plagemann, Mobile Dis-
tributed Complex Event Processing—Ubi Sumus? Quo Vadimus? Cham:
Springer International Publishing, 2018, pp. 147–180.

[41] J. Aracil, R. Edell, and P. Varaiya, “A phenomenological approach
to Internet traffic self-similarity,” in Proceedings of the 35th Annual
Allerton Conference on Communication, Control and Computing, 1996,
pp. 1–24.

[42] R. D. Smith, “The dynamics of Internet traffic: Self-similarity, self-
organization, and complex phenomena,” Advances in Complex Systems,
vol. 14, no. 6, pp. 905–949, 2011.

[43] R. Donthi, R. Renikunta, R. Dasari, and M. Perati, “Study of delay and
loss behavior of Internet switch-markovian modelling using circulant
markov modulated poisson process (CMMPP),” Applied Mathematics,
vol. 5, no. 3, pp. 512–519, 2014.

[44] C. Dabrowski, “Catastrophic event phenomena in communication net-
works: A survey,” Computer Science Review, vol. 18, pp. 10 – 45, 2015.

[45] X. Liu, A. Harwood, S. Karunasekera, B. Rubinstein, and R. Buyya, “E-
Storm: Replication-based state management in distributed stream pro-
cessing systems,” in Proceedings of the 2017 International Conference
on Parallel Processing, 2017, pp. 571–580.

[46] M. Yang and R. T. Ma, “Smooth task migration in Apache Storm,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015, pp. 2067–2068.

[47] P. T. Goetz and B. O’Neill, Storm Blueprints: Patterns for Distributed
Realtime Computation. Packt Publishing Ltd, 2014.

[48] “Wordcounttopology.” [Online]. Available: http://t.cn/RajHPwZ
[49] Kafka. [Online]. Available: http://kafka.apache.org/


