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Abstract—Dynamic Host Configuration Protocol (DHCP) is
widely used to dynamically assign IP addresses to users. However,
due to little knowledge on the behavior and performance of
DHCP, it is challenging to configure lease time and divide IP
addresses for address pools properly in large-scale wireless net-
works. In this paper, we conduct the largest known measurement
on the behavior and performance of DHCP in the wireless
network of T University (TWLAN). We find the performance
of DHCP is far from satisfactory: (1) The non-authenticated
devices lead to a waste of 25% of addresses at the rush hour. (2)
Address pool utilization varies greatly under the current address
division strategy. (3) A device does not generate traffic for 67 %
of the lease time on average. Meanwhile, we observe devices
of different locations and operating systems show diverse online
patterns. A unified lease time setting could result in an inefficient
usage of addresses. To address the problems, taking account
of authentication information and online patterns, we propose
a new leasing strategy. The results show it outperforms three
state-of-the-art baselines and reduces the number of assigned
addresses by 24% and the average total lease time by 17%
without significantly increasing the DHCP server load. Besides,
we further propose an adaptive address division strategy to
balance the address utilization of pools, which can be deployed
in parallel with the new leasing strategy and reduce the risk of
address exhaustion.

Index Terms—DHCP, measurement, performance, optimiza-
tion

I. INTRODUCTION

Dynamic Host Configuration Protocol (DHCP) is widely
used to dynamically assign IP addresses to devices when they
connect to the network [1]. In recent years, IP addresses have
been almost exhausted so that available IP addresses for most
enterprise networks are limited [2—4]. DHCP has the capability
to manage IP addresses more efficiently and flexibly than
manual configuration.

However, more and more complicated wireless network
environment brings great challenges to DHCP. On one hand,
roaming of devices may result in a waste of IP addresses.
When a device moves from a subnet to another subnet, it
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will acquire multiple IP addresses [5—7], and the DHCP server
cannot reclaim idle IP addresses in time. On the other hand,
most wireless networks deploy authentication mechanisms,
and users need to authenticate before accessing the Internet.
However, many devices may be automatically associated with
the wireless network without authentication. They request and
occupy IP addresses, but do not generate any traffic. For
example, the access points (AP) of the wireless network in
T University (TWLAN) share the same Service Set Identifier
(SSID). If devices ever connect to the APs, they can be
associated with the wireless network and acquire IP addresses
successfully without authentication, which also results in a
waste of a large number of IP addresses. In locations where
there are a large number of concurrent users (e.g., cafeteria),
even if the signal strength is very high, some devices still
cannot be associated with the wireless network. One possible
reason for that is IP addresses are exhausted due to the large
number of non-authenticated users. Besides, when a wireless
network covers a large area, in general, network administrators
will configure several access controllers (AC) to manage all
APs and empirically divide IP addresses into multiple address
pools to associate with different ACs. An improper address
division strategy will aggravate the exhaustion of addresses.

As one of the most important parameters in DHCP, the
lease time determines how long a device could own an IP
address. Proper lease time setting is helpful to improve the
utilization of IP addresses. However, there is no clear guideline
for administrators to set the lease time properly [8]. In T Uni-
versity, network administrators always set a fixed value based
on experience. Unfortunately, setting a too long lease time will
lead to a waste of IP addresses because some addresses may
be occupied by the devices that already become inactive, while
setting a too short lease time may greatly increase the DHCP
server load. Due to lack of a comprehensive understanding
on the behavior and performance of DHCP, it is challenging
for network administrators to configure a proper lease time.
Even worse, in large-scale wireless networks where addresses
are divided into multiple pools, an improper address division
strategy may result in the case that addresses are exhausted
in some pools while at the same time a lot of addresses are
available in other pools.

Most previous works try to improve the performance of
DHCEP from the perspective of finding a proper leasing strategy
[8—11]. They are designed for a relatively simple network envi-
ronment with fewer locations, device types and users, and they
may not be able to adapt to the complicated wireless network
environment. Moreover, all of the works take no account of the
impact of non-authenticated users and lack a comprehensive



understanding on the behavior and performance of DHCP.
To fill the gap, in this paper, we systematically conduct a
large-scale measurement on the behavior and performance of
DHCP in TWLAN, which has more than 59,000 individual
users, 10,000 APs and 130,000 unique IP addresses. Based
on the analysis, we design an effective strategy to properly
set the DHCP lease time. What’s more, we further propose
an adaptive address division strategy to balance the address
utilization of pools and reduce the risk of address exhaustion.
The main contributions can be summarized as follows:

e To the best of our knowledge, we conduct the largest
scale measurement on the behavior of DHCP. We find that
the relationship between the trends of request messages
and expiration messages varies for different locations. A
mobile device (e.g., mobile phone) produces more request
messages than a laptop per day on average, and the number
of messages produced by an IoT (Internet of Things)
device falls in between. Besides, we also reveal some non-
conforming and rare user behavior, which could have large
impacts on the performance of DHCP.

o« We present a systematic analysis on the performance of
DHCP to understand the inefficiency in its operation and
management. We show that there is a large gap between
the number of IP addresses assigned by the DHCP server
and that acquired by authenticated users. About 25% of
addresses are wasted at the rush hour. Under the experience-
based address division strategy, the address pool utilization
for different pools varies greatly. Further, we find that a
device does not generate traffic for 67% of the lease time
on average. The performance of DHCP is far from satis-
factory in the complicated wireless network environment.
Meanwhile, there are diverse online patterns for devices of
different locations and OSes. A unified lease time setting
could lead to an inefficient usage of IP addresses.

« By distinguishing authenticated users and non-authenticated
users, and further taking account of different online patterns
of authenticated users, we propose a new leasing optimiza-
tion strategy. It is light-weight and can be easily configured
with parameters computed offline. We compare the proposed
leasing strategy with three state-of-the-art baselines and
the original leasing strategy in TWLAN on four metrics.
The replay results show that our strategy outperforms other
strategies and reduces the number of assigned addresses by
24% without significantly increasing the DHCP server load.
Besides, the total lease time is reduced by 17% on average
and the IP address utilization improves by around 10%.

o To further improve the performance of DHCP, we propose
an adaptive address division strategy. It can re-divide IP
addresses among different address pools according to their
demanded pool sizes that are predicted using the Random
Forest Regression model before the rush hour. Experimental
results show that the adaptive address division strategy can
be deployed in parallel with the new leasing optimization
method and further reduce the risk of address exhaustion.
The proposed method can effectively balance the address
utilization of these pools, which means that each pool has
available capacity to support more concurrent users.

Authentication BEEEEEER
Server
P “Ap
= 7
C 9 \-\@
\ Campus Backbone
5 Network Interne

Campus Network
Edge Router

00
I=] pHCP Server
[—

Fig. 1:
TWLAN.

of network communication in

The architecture

The rest of the paper is organized as follows. In Sec-
tion II, we introduce the datasets and methodologies used
in this paper. We present our measurement results of the
DHCP behavior in Section III. In Section IV, we analyze
the inefficiency of DHCP. In Section V and Section VI, we
respectively propose a new leasing strategy and an adaptive
address division strategy to improve the DHCP performance.
Finally, we summarize the related works in Section VII and
conclude this paper in Section VIII.

II. DATASET AND METHODOLOGY

Our analysis and performance evaluation are based on
several datasets collected in a large-scale campus wireless
network, i.e., TWLAN. TWLAN has more than 59,000 in-
dividual users, 10,000 APs and 130,000 unique IP addresses.
As shown in Fig. 1, TWLAN is managed by several ACs. Each
AC controls large quantities of APs in multiple buildings and
these APs share the IP address pool assigned to the AC. When
one device connects to the wireless network, it first initiates a
DHCEP request to the DHCP server to obtain one IP address.
After that, it needs to communicate with the authentication
server to authenticate the user’s identity for accounting before
accessing the Internet. After the authentication is successfully
completed, all packets of the device can be forwarded to the
Internet via the campus network edge router. In this paper,
we mainly use the data collected in the week from May
20th, 2017 to May 26th, 2017 for measurement analysis and
leasing strategy evaluation'. In this section, we first introduce
the datasets collected in this week. Then we describe the
methodologies used to find device locations and identify the
types and OSes of devices, which will be used for the analysis
in the following sections.

A. Dataset

In this paper, we mainly use four types of data, namely
DHCP logs, authentication logs, SNMP [12] data and NetFlow
[13] flow records.

(1) DHCP Logs: DHCP logs are generated by the DHCP
server and record actions of the server in response to requests
of DHCP clients. There are more than 22,600,000 entries in
the one-week logs. Each entry records the time of a message
and IP address and MAC address of a client. Besides, it also

'We also use the data collected in the week from May 13th, 2017 to
May 19th, 2017 to find the online patterns in Section V-B and the optimal
leasing setting in Section V-C. Besides, to build the common device database
in Section IV-A and train the address prediction model in Section VI, we
additionally collect DHCP logs for two months.



includes some important attributes described below:
Description: 1t indicates the type of the DHCP message [14].
There are 8 major message types in TWLAN: ASSIGN (A
DHCP server assigns a new IP address to a DHCP client),
RENEW (A DHCEP client updates the lease time from a DHCP
server), RELEASE (A DHCP client releases the IP address
explicitly), EXPIRE (A lease expires and a DHCP server
reclaims the IP address), DELETE (A DHCP server deletes
the record of an unavailable IP address), NACK (A lease
request is denied by a DHCP server), CONFLICT (A DHCP
server detects that an unassigned IP address has been used
in TWLAN), and EXHAUSTED (An IP address pool has no
available IP address to assign).

Host Name: It presents the host name of a DHCP client [15].
Users can customize meaningful strings as the names of their
devices. It usually contains some words that can be used to
identify the device type [16].

Vendor Class: 1t gives an identifier value that provides some
clues of the device OS [15, 17]. For example, the devices with
OSes of Windows series set the field as ‘MSFT” by default
[18], while devices of Apple usually do not set the field.

(2) Authentication Logs: In TWLAN, for authentication
and accounting, an IP address must be authenticated by a user,
i.e., associating the address with the user, before the address
can be used to access the Internet, and the user would pay for
all traffic flows from and to the address. Generally speaking,
the user should disassociate the address with it when it goes
offline. But the user may forget to notify the authentication
server. In this case, it is required that the DHCP server
notifies the authentication server when it reclaims an address,
otherwise the administrator may get incorrect accounting data
if the IP address is assigned to other users by the DHCP server.
All authentication information is recorded in authentication
logs. There are more than 1,000,000 entries in the one-week
logs. Each entry indicates the identity of the authenticated user,
IP address, user login time (association) and user logout time
(disassociation). These entries would be used to determine
whether an IP address is authenticated at any particular time
point. Besides, all communication with the authentication
server is based on HTTP. In this work, we capture all user
authentication requests and extract the user agent information
from HTTP request headers, which will be used to identify
the types and OSes of devices.

(3) SNMP Data: SNMP is widely used for network man-
agement [19, 20]. In TWLAN, all ACs support SNMP and
provide a set of data objects for administrators to monitor
their status and configurations. In this work, we use a script
to poll ACs every 5 minutes and get the following key-value
pairs, (1) MAC address of a user device and MAC address of
the AP to which it is associated, (2) MAC address of an AP
and the name of the AP, and (3) MAC address of a user device
and IP address it obtains by DHCP request. The SNMP data
will be used to determine the location of each active device.
We will discuss it later in Section II-B.

(4) NetFlow Flow Records: We deploy NFDUMP [21] to
collect NetFlow flow records exported by the campus network
edge router. We extract five attributes for each flow record:
start time, duration, source IP address, destination IP address

and total bytes of the flow. During the one week, we collect
more than 3.5 terabytes flow records in total. This dataset
is used to determine whether a device is really active at any
particular time point.

B. Finding Device Location

In TWLAN, each AC controls a large number of APs in
different buildings, and these APs share the same IP address
pool that is associated with the AC. Therefore, IP addresses in
one pool can be assigned to user devices in different buildings.
It is difficult to accurately determine the locations of user
devices only by IP addresses.

In this paper, we rely on the SNMP data to determine the
location of each device at a time point. By analyzing the three
types of key-value pairs collected by SNMP polling, we can
get the name of the AP to which one device is connected at the
time point. The APs in TWLAN are named following certain
conventions. Particularly, it contains a string prefix that can
determine the building where the AP is located. In this way,
we can determine the locations of DHCP clients when they
issue requests.

C. Identifying Device Type and OS

Previous work [8] identifies the device type and OS only
by DHCP message fields. However, some users would like to
modify the Host name field to hide the device information,
which brings a great challenge for type and OS identification.
The methods in the works [22, 23] identify the device type
and OS based on HTTP user agent, which fail to deal with
the cases in which user agent information is modified or not
provided. In the work [24], the authors propose that DHCP
messages and HTTP user agent can complement each other in
the identification of device types. However, it mainly focuses
on the identification of device types and the information used
in the method is not sufficient to identify device OSes.

In this paper, we propose an improved method to identify
device types and OSes, which combines more fields (e.g.,
Host Name, Vendor Class, MAC address, etc) in DHCP logs
and user agent in authentication logs. Our method consists of
two rounds. In the first round, the fields of DHCP messages
mentioned above are exploited. The fields Vendor Class and
oui of MAC address are more credible than the field user
agent in authentication logs because they cannot be modified
by users easily, therefore we use them for the first-round
identification. If there are explicit strings (e.g., ‘iPhone’,
‘MacBook’, ‘MSFT’) in the fields (i.e., Host Name, Vendor
Class and MAC address) of DHCP logs, we can directly
identify the types and OSes of the devices. For example, if
Vendor Class is ‘MSFT’ for a device, we can determine that
its OS belongs to the Windows series. Then we further check
the field Host name. If there is a string ‘desktop’ or ‘laptop’
in Host name, we can determine that it is a Windows laptop
instead of a Windows mobile device. Similarly, if there is a
string ‘phone’, it is identified as a Windows mobile device.

Obviously, if there is no sufficient evidence in the fields
of DHCP messages, the types and OSes of some devices
cannot be determined definitively in the first round. For these
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Fig. 2: Trends of request messages (the blue soild line) and expiration messages (the red dotted line) in different locations

(values are normalized).

devices, we start the second round and conduct a keyword-
based searching on the field user agent of their authentication
logs. If it also fails to determine the types and OSes of
some devices, we mark these devices as “unknown”. Even
if the second round successes, we do not use its results
directly because we think the information given by user agent
is less credible. We will check if the first round provides
useful information (although insufficient to draw any definitive
conclusions) or clues. In case there is useful information, we
will check if the identification results from the second round
are consistent with the clues given by the first round. If there is
no conflict between them, we can safely use the results of the
second round. Otherwise, we mark the devices with conflicts
as “unknown”.

We apply these three different identification methods (i.e.,
DHCP messages based method, HTTP user agent based
method and our proposed method) that can identify the device
OSes to the one-week dataset. The results show that the types
and OSes of about 98.3% of devices can be identified by our
method, which greatly improves the recognition rate compared
with previous methods.

During the week from May 20th, 2017 to May 26th, 2017,
there are 103812 unique devices in total. We observe that
Windows OS dominates laptops. The proportion is about
68.9% (#24616/#35721). Android and iOS are two major
OSes used by mobile devices. Their proportions are 50.6%
(#32214/#63604) and 49.1% (#31235/#63604). Besides, we
also identify 557 IoT devices.

III. DHCP BEHAVIOR MEASUREMENT

In this section, we look into the dataset of DHCP mes-
sages, and try to reveal the relationship between the device
behavior and the DHCP behavior. The analysis of messages
of ordinary types, i.e., ASSIGN, RENEW and EXPIRE, shows
that location, device type and device OS have a clear influ-
ence on DHCP behavior, which inspires us to optimize the
performance of DHCP from the views of diverse location
and device OS patterns in Section V. Additionally, we also
investigate messages of special types, ¢.e., NACK, CONFLICT
and RELEASE. These types of messages do not appear a lot,
but their appearances suggest abnormal or rare user behavior.

To the best of our knowledge, it is the largest scale DHCP
behavior measurement in enterprise networks.

Since both message types of ASSIGN and RENEW indicate
clients are requesting IP addresses, we do not differentiate
them in this section, and name them as REQUEST messages.

A. DHCP Messages in Different Locations

In TWLAN, REQUEST messages and EXPIRE messages
together account for 80% of the total number of DHCP
messages. We plot the trends of the number of these messages
in different locations during the week in Fig. 2. Here, we
determine the location of each DHCP message using the
method described in Section II-B. Then these locations, <.e.,
buildings, are classified into six categories: administrative
building, cafeteria, dormitory, gymnasium, research building
and classroom building. The classification method of buildings
is inspired by previous works [19, 25].

We observe that the trends of both message types have a
strong daily pattern for all location categories. In adminis-
trative buildings, research buildings and classroom buildings,
the number of REQUEST messages and EXPIRE messages at
weekends is significantly less than that on weekdays. Besides,
it is very interesting that the trends of REQUEST messages
are positively correlated to the trends of EXPIRE messages
in cafeterias and gymnasiums. They approximately reach the
peaks at the same time. It is because users tend to stay for
a short time in these locations, and the DHCP server will
assign and reclaim IP addresses frequently. However, in other
locations, users tend to stay for a long time, therefore we
cannot see such a positive correlation. For example, during
the class time, users are likely to generate a lot of REQUEST
messages, while a very small number of EXPIRE messages.

B. DHCP Messages of Different Operating Systems

In this part, we explore the DHCP behavior of different
kinds of devices. Fig. 3(a) shows the CDF of the number of
REQUEST messages generated in one day for devices with
different types and OSes.

We find that a mobile device (iI0S, Windows Phone, An-
droid, etc.) generates more REQUEST messages than a laptop
(Windows, MAC OS, Linux) on average. The IoT device falls



in between. It can be explained by Fig. 3(b), which presents
the CDF for the number of APs to which a device connects
in one day. We observe that about 30% of mobile devices are
associated with more than 5 APs while more than 75% of
laptops are associated with less than 3 APs per day, which
indicates mobile devices move more frequently than laptops.
Thus, in general, mobile devices generate more REQUEST
messages than laptops. In Fig. 3(b), we further distinguish
between mobile [oT devices (e.g., smart watch) and static
IoT devices (e.g., air humidifier) based on keywords in their
names and present measurement results for them separately.
We observe that more than 60% of static IoT devices are
associated with only 1 AP in one day, which means that
these IoT devices never move and they tend to generate less
REQUEST messages than laptops. About 42% of mobile IoT
devices are associated with more than 4 APs per day, which is
similar to mobile devices. Frequent moves of these mobile IoT
devices may cause that they generate a comparable number of
REQUEST messages with mobile devices.
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Fig. 3: (a). CDF for the number of request messages generated
by devices with different types and OSes per day. (b). CDF
for the number of APs to which a device connects per day.

The other finding from Fig. 3(a) is that for the same device
type, the devices of Apple generate more REQUEST messages
than other devices per day. For example, the number of
REQUEST messages generated by an i0OS device is 40% more
than that generated by an Android device on average. It can
be explained by the difference of default energy management
policies of different devices. The Wi-Fi interfaces of iOS
devices will sleep when the device display is switched off,
while the policy for Android devices can be configured and
the default policy setting is “never sleep”. Therefore, iOS
devices will generate more REQUEST messages when their
Wi-Fi interfaces are re-activated.

C. Special Message Types and Corresponding User Behavior

Some message types described in Section II-A do not
appear frequently but reflect the non-conforming and rare user
behavior, which may have large impacts on the performance
of DHCP.

When a device issues a lease request that cannot be satisfied
by the DHCP server, the server will deny the request and send
a NACK message. From the one-week DHCP logs, we find
there are three major reasons that may lead to the occurrence
of NACK messages: (1) About 65% of them are due to the
user mobility. When a user moves to a new network with a
different address pool, it continues to request for the address
it acquired in the previous lease from the previous network.
In this case, the DHCP server will deny the lease request

because the corresponding pool does not have the address. (2)
Another reason is that a device tries to renew a lease that has
expired, which accounts for about 18% of NACK messages.
For example, the lease for the device A has expired and A
tries to renew the old lease after a period of time, while the
IP address has been assigned to the device B. Therefore, the
renewal request of A cannot be satisfied. (3) The rest NACK
messages are likely to be caused by misconfigurations in the
network, which has been reported in [9].

A CONFLICT message indicates that the DHCP server
detects that an unassigned IP address has been used in the
network, which might be caused by non-conforming users
intentionally setting static addresses for their devices instead
of obtaining addresses via DHCP. Non-conforming users can
infer the address pools, subnet masks and default gateways
of the subnets, and further configure static IP addresses for
their devices accordingly. In TWLAN, the DHCP server is
configured to proactively detect whether an IP address has
been used (i.e., ping the IP address and see if there is a
response) before assigning the IP address to a device. If the
detection shows that the IP address has been occupied, the
address would not be assigned, and the DHCP server would
mark the IP address as “unusable” and generate a CONFLICT
entry in its log. The DHCP server will periodically detect
whether the address is still occupied until the answer is
no. In other words, the DHCP server “loses” the address
if a non-conforming user always occupies it. We name this
phenomenon as address theft. Our measurement shows that
about 155 IP addresses are stolen from the address pools by
non-conforming users per day. Besides, we observe that about
40% of conflict addresses are occupied by non-conforming
users for more than 3 hours.

We also investigate RELEASE messages and explore the
proportion of leases that explicitly release IP addresses during
the week. We find that the proportion for each day does not
vary a lot and all of them are less than 2%. It indicates users
seldom release their addresses explicitly. In other words, most
of idle devices will continue to occupy IP addresses until their
leases expire.

IV. DHCP INEFFICIENCY IN OPERATION

In this section, we conduct a measurement study to un-
derstand the reasons for the inefficiency in DHCP operation
and management from different perspectives. In the first part,
we study the impact of non-authenticated users and address
division strategy on DHCP performance. In the second part,
we show the gap between the active online time of a device
and its total lease time, and further explore the online patterns
for different locations and device OSes. The analysis of non-
authenticated users and device online patterns motivates us to
propose the lease time optimization strategy in Section V, and
the analysis of address pool utilization motivates us to propose
the adaptive address division strategy in Section VI.

A. Non-authenticated Users and Address Pool Division

In TWLAN, only authenticated devices can access the
Internet. However, non-authenticated devices can connect to
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Fig. 4: The gaps between the number of IP addresses assigned by the DHCP server (the red solid line) and the number of 1P
addresses acquired by authenticated users (the blue dotted line) in different locations.

APs automatically if they ever connect to TWLAN. After
connecting to APs, they can request addresses from the DHCP
server. The DHCP server will fairly assign IP addresses to
them after receiving DHCP requests. Although the devices of
non-authenticated users cannot access the Internet, they oc-
cupy IP addresses. It obviously results in a waste of addresses
which would otherwise be assigned to other devices.

Fig. 4 represents the differences between the number of IP
addresses assigned by the DHCP server and that acquired by
authenticated users during the week in different locations. We
observe that the trends of the two curves are consistent. The
peak time is related to the location category. For example,
the number of assigned IP addresses peaks during two time
periods (10:00-11:00, 14:00-16:00) in research buildings (Fig.
4(e)), which is because that most students are accustomed
to researching during the periods. Students and staffs often
have meals at 12:00 and 18:00, thus the number of assigned
IP addresses in cafeterias (Fig. 4(b)) peaks at that time.
Furthermore, we find that there exists a large gap between
the two curves, which indicates a large number of IP ad-
dresses are assigned to non-authenticated users. However, the
extent of the gap for different locations varies very much. In
classroom buildings (Fig. 4(f)), the majority of users tend to
authenticate to search for online materials. Therefore the gap is
relatively small. While in administrative buildings (Fig. 4(a))
and gymnasiums (Fig. 4(d)), users prefer to do some other
things rather than surf the Internet. As a result, more users
would not authenticate themselves and the gaps are very large.
It is interesting that the gap in dormitories is more significant
than that in classroom buildings and research buildings, which
can be explained by the following reason. A student usually
owns multiple devices. Most of devices are more likely to
appear in dormitories, such as various mobile devices and
some IoT devices (e.g., PlayStation, air humidifier, etc.). A
student is less likely to use multiple devices at the same time,
but these devices may be associated with the wireless network
and obtain IP addresses, which leads to the relatively large gap
in dormitories. While students generally study or research in
classroom buildings and research buildings. They tend to only
take necessary devices with them and most devices will be
authenticated.

When a device issues a DHCP request for the first time,
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Fig. 5: (a). The changes of the IP address utilization during
the week. (b). The IP address pool utilization for 5 typical
address pools in TWLAN.
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the DHCP server does not know whether the device will
be authenticated later, therefore the DHCP server cannot
distinguish between authenticated users and non-authenticated
users and set different lease times for them. In order to solve
the problem, we build a common device database based on
the historical DHCP logs and authentication logs (data for past
two months) in TWLAN. A device is regarded as a common
device if its MAC address appears in DHCP logs on each
weekday and at least be authenticated once in a week. We can
see that common devices are the devices that are frequently
used by students or staffs of T university (¢.e., not visitors),
and these devices are more likely to be authenticated to access
the Internet. The common device database is updated once a
week to ensure the effectiveness. It will be used in lease time
optimization in Section V.

As shown in Eq. (1), we define a new metric, namely IP
address utilization Uy, to represent the ratio of IP addresses
used by common devices (I P.ommon) to all IP addresses
assigned by the DHCP server (IP;uq;). The larger Uj, is,
the less IP addresses are inefficiently used.

total

We plot Uy, in Fig. 5(a). We observe that average U, at
weekends is lower than that on weekdays, which is because
that there are a lot of visitors at weekends. Besides, U;, at
night is higher than that in the daytime, which is because that
users are almost in dormitories at night. They are more likely
to be students or staffs and use their common devices. At the
rush hour, we find Uy, is about 75%, which means about 25%
of IP addresses are inefficiently used on average.

Up =



Now let us focus on the impact of the address division
strategy. In TWLAN, for the convenience of management,
all TP addresses are divided into multiple address pools and
each pool is associated with an AC. The size of each pool
is intuitively set by network administrators based on their
experience and does not change over time. Obviously we
would like to see the pool size is adaptive to the address
demand of the AC to avoid the case that one pool is exhausted
while other pools have a lot of available addresses. The
intuitive setting by experience may not work well.

In order to evaluate the current address division strategy, we
define IP address pool utilization Uy, as follows:

Upool = H;};”l" o)
wherein I P;.,,anq 1S the maximum demand of IP addresses of
the corresponding AC, and I P, is the size of the pool. Note
that even though devices cannot get available IP addresses
when address pools are exhausted, their DHCP requests are
still recorded in DHCP logs in the form of EXHAUSTED
message type. Therefore, we can accurately get the maximum
demand of IP addresses during a time period. We plot Fig.
5(b) to show U, at the rush hours for five typical address
pools in TWLAN (Other address pools are similar with these
five cases so that we omit them for brevity). We can see that
Upoor for both pool 1 and pool 2 exceeds 1, which means
that IP addresses are exhausted for the two pools and many
users cannot get addresses. While for pool 4 and pool 5,
Upoor 1s very low and addresses are not fully utilized, which
indicates a resource waste. Uy,,,; for pool 3 is close to 1 and it
faces great risk of address exhaustion. The analysis shows that
Upoor varies greatly for different pools. The experience-based
division method is not satisfactory.

B. DHCP Total Lease Time & Active Online Time

In Section III-C, we have mentioned that most user devices
do not explicitly release the addresses. As a result, IP addresses
cannot be reclaimed until leases expire although they have
not been needed by devices. If we can predict the length
of online time of the device, we can set the length of lease
time accordingly to avoid the resource waste of idle devices.
Obviously, a fixed length of lease time cannot achieve this
goal. In this part, we collect more than 3.5 terabytes NetFlow
data during the week to study the waste caused by idle devices.

We define the active online time in a lease as the duration
from the time when a device issues a DHCP request (ASSIGN
message) to the time when a device generates the last byte. By
analyzing DHCP logs and NetFlow flow records, we can find
out the active online time of all leases. DHCP total lease
time is defined as the time period during which a device
actually occupies an IP address in a lease. Fig. 6 describes

Assign Active Online Time Last Byte Expire/Release

A

\ )
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Total Lease Time
Fig. 6: Relationship between the active online time and the
total lease time for a given lease.

the relationship between the active online time and the total
lease time. Fig. 7(a) shows the CDF of DHCP total lease time
and active online time for all leases. We observe that there is a
large gap between the two curves and the active online time is
far less than the total lease time on average. The median of the
active online time is about 28 minutes, while the median of the
total lease time is about 85 minutes, which means that about
67% of the time for the IP address is wasted. It aggravates the
exhaustion of the limited IP addresses.

We further explore the online time length in different loca-
tions of TWLAN and plot the results in Fig. 7(b). We observe
that the distribution of the online time length of devices varies
for different locations. In administrative buildings, cafeterias
and gymnasiums, the online time for more than 50% of devices
is less than 10 minutes. In classroom buildings, the average
online time is about 75 minutes and the online time for
more than 80% of devices is less than 150 minutes. This is
because that in general the time for a class is 95 minutes,
and the time for some important classes is 155 minutes.
The distributions of online time in research buildings and
dormitories are similar. Both of them are long tail distributions,
which can be explained by the fact that some students tend
to stay in research buildings or dormitories for a long time.
Fig. 7(c) shows the CDF of the active online time for devices
with different OSes. Again we see the curves are different for
different OSes although they are all long tail distributions.
Particularly, laptops tend to have longer online time than
mobile devices, and we observe that the online time for 90%
of IoT devices is close to 0, which is likely to show IoT
devices seldom use WiFi for communication although their
WiFi modules are turned on. In summary, we can see that
the locations and OSes of devices have a clear influence on
the length of their active online time. A method to set DHCP
lease time adaptively is necessary and the method should take
account of the location and device OS.

V. LEASE TIME OPTIMIZATION

From our measurement study, we see that the waste of
IP addresses can be mitigated if we can set the lease time
differently for different users and devices, ¢.e., taking account
of the authentication information, location and device OS. In
this section, we introduce our ideas and implementation of
the lease time optimization strategy. Moreover, we conduct
experiments to demonstrate the effectiveness of our strategy
by comparing with three state-of-the-art strategies and the
strategy currently used in TWLAN. Particularly, we develop a
replay algorithm to recover users’ behavior, e.g., requesting for
addresses and becoming offline, and simulate DHCP message
interactions as realistic as possible for performance evaluation.

A. Objective and Heuristics

The main objective is to minimize the waste of IP addresses
by setting lease time properly. A shorter lease time is always
helpful for our objective, but inevitably increases the DHCP
server load. Therefore, the objective of the optimization is to
find a good tradeoff between the efficiency and cost. In other
words, our goals are to (1) reduce the number of assigned IP
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addresses as much as possible and (2) restrict the increase of
the DHCP server load to a threshold.

The DHCP server load in this paper is measured by the
number of received DHCP request messages and response
messages. The network administrators in TWLAN suggest that
the DHCP server load should not increase beyond 30%, which
is determined according to the specific network environment.

We cannot predict the exact online time of each device in a
lease, so we have to rely on heuristics to determine the proper
lease time for each DHCP request. From our measurement and
data analysis, we propose the following two heuristics:

1) For devices that are not in the common device database
(built in Section IV-A), the DHCP server should assign
leases with a shorter time.

2) For the device in the common device database, the longer
its expected active online time (determined by its location
and OS) tends to be, the longer lease time should be
assigned.

The first item ensures that the DHCP server can reclaim
IP addresses of devices that never authenticate in time. The
second item ensures that the lease time setting takes account
of the location and operating system information, and prevents
a large number of DHCP messages from being generated.

B. Expected Online Time of Authenticated Users

We have found that the distribution of active online time was
different for devices in different locations and with different
OSes. In TWLAN, there are 6 location types and 8 OS types,
which produces 48 combinations in total. Eight of them can
be omitted because of their trivial proportions. We collect the
data of the week from May 13th, 2017 to May 19th, 2017 and
plot the CDF of the device online time for the 40 combinations
respectively (For brevity, we omit the CDF figures). We find
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Fig. 9: The trends for the number of assigned addresses and
DHCP server load with the change of the parameter x.

that some of them have a similar distribution, which means that
they have a similar online pattern and can be treated equally.

We use the median of the online time distribution to
represent the online pattern for each combination and show
the median time length in Fig. 8. X-axis represents all combi-
nations ordered by the median of the online time. We observe
that these combinations of (OS, location) can be classified into
five classes according to their median online time lengths. We
mark these five classes by different colors and symbols. For the
same class, authenticated users have an approximately same
median of active online time that can be represented by one
value. We define the value as expected online time of the class.
The details are shown in Table 1. The wildcard in the second
column means that all locations or OSes can be matched. It
follows the longest match. The expected online time will be
used in lease time optimization.

C. Strategy to Set Lease Time

We propose a new strategy to set the lease time for each
DHCP request as follows. After receiving a request, the DHCP

TABLE I: Five classes of authenticated users.

Index Combinations Expected
#) (OS, Location) Online Time
(MAC OS, gymnasium), (BlackBerry, *),
1 (Windows Phone, cafeteria), (IoT, *), Smin
(Windows Phone, administrative building)
[ 2 ][ (Android, gymnasium), (%, cafeteria) ] 20min
(Windows, cafeteria), (iI0S, gymnasium),
3 (Android, administrative building) 35min
(Linux, gymnasium),
4 (i0S, administrative building) 60min
[ 5 T Other combinations I 90min




server will check whether the device that issues the request is
in the common device database. If it is not in the database,
we set its lease time as 5 minutes. If it is a common device,
the method will first obtain its location and OS. After that,
the method will find its class index by matching its (OS,
Location) with the entries of Table I. According to the second
heuristic in Section V-A, we propose that the lease time can
be set to be linear with the expected online time given by
Table I for a common device. Let = denote the inverse of the
linear coefficient, ¢.e., the ratio of the expected online time to
the lease time. It can be tuned to achieve a desired tradeoff
between the DHCP server load and the maximum demand of
IP addresses. A larger x will result in a heavier DHCP server
load (since more RENEW messages are generated because of a
shorter lease time). A smaller z will result in a larger demand
of IP addresses (since more addresses are occupied by inactive
devices because of a longer lease time).

What we need to do is to find the best value of x to make
a good tradeoff in TWLAN. We gradually tune = and derive
the resulting address demand and server load by replaying the
DHCP logs of the week from May 13th, 2017 to May 19th,
2017 under each parameter x. The replay algorithm will be
introduced in Section V-D in detail. Fig. 9 shows the trends
for the number of assigned IP addresses and the DHCP server
load with the change of the parameter x. X-axis represents the
parameter z, left Y-axis represents the ratio of the number of
assigned IP addresses in the new lease time setting to that in
the original lease time setting, and right Y-axis represents the
ratio of the DHCP server load in the new lease time setting
to that in the original lease time setting. We observe that with
the increase of the parameter x (i.e., the decrease of the lease
time), the benefit we get, i.e., IP address decrement, becomes
smaller, while the increase of the DHCP server load grows
linearly. Since we need to restrict the increase of the server
load to 30%, we regard x = 2 as the sweet spot. © = 2 means
that the lease time should be set to a half of the expected online
time. We can find it reduces the number of assigned addresses
by 24% without significantly increasing the DHCP server load.

D. Replay Algorithm

We need to know the resulting IP address usage and
DHCP server load under any particular lease time strategy
to determine the parameter x (Section V-C) and evaluate the
performance of various strategies (Section V-E). Therefore,
we design a replay algorithm, which can infer the behavior
of users from real-world DHCP logs (such as when they send
DHCP requests to re-activate devices and when they become
offline) and then replay their behavior to generate DHCP
messages according to the strategy to be evaluated. With the
replay algorithm, we can get the sequence of DHCP messages
in case that the strategy is deployed, and then the resulting
statistics for the strategy can be derived.

The replay algorithm should mainly focus on five message
types (i.e., ASSIGN, RENEW, RELEASE, EXPIRE and EX-
HAUSTED) because they represent a complete lease process.
Among these five types, ASSIGN and RELEASE messages
are directly triggered by users’ actions and they would not

be affected by the leasing strategy being used, therefore
we can just copy these messages from original DHCP logs
collected from our real-world network. Other messages would
be generated at different timepoints after we deploy a new
leasing strategy. In other words, they should be generated
according to the strategy being used and the behavior of users
recovered from original DHCP logs. Here we mainly introduce
how to generate RENEW messages and EXPIRE messages
(1) Generating RENEW messages

In DHCP logs, RENEW messages can be caused by two
different reasons. The first reason is the lease extension
mechanism. At the half of the lease time, if a client is still
associated with the network, it will automatically request for
a lease extension, which results in a RENEW message. Let us
name them as lease extension RENEW messages. The time
point of generating this type of message is determined by
the specific leasing strategy. Therefore, we need to ignore the
lease extension RENEW messages in the original DHCP logs
because the assigned lease time has changed, and generate
new lease extension RENEW messages periodically based on
the new leasing strategy.

The second reason causing RENEW messages is user be-
havior, such as rebooting systems, wakening displays, and
re-activating WiFi interfaces. In these cases, the device will
generate a RENEW message to confirm the correctness of the
previously obtained address. Let us name these messages as
init-reboot RENEW messages. We need to copy these messages
to the new DHCP logs because the real-world user behavior
should remain the same when replaying, which means that
the time to generate init-reboot RENEW messages under the
new leasing strategy should be the same with that under the
original leasing strategy.

As shown in Fig. 10(a), the arrival of init-reboot requests is
stochastic while lease extension requests are always generated
at the half of the lease time. We can distinguish the two
kinds of requests by the time interval between two consecutive
renewal requests.

(2) Generating EXPIRE messages

In the example shown in Fig. 10(b), with the original lease
strategy, the lease is expired at tg and the last renewal request
is at t3. We can infer two results, i.e., the lease time under
the original lease strategy is ¢t = tg — t3, and the device has
been disconnected from the AP at t5 = (t3 + t6)/2 (i-e.,
the midpoint of the original lease period), otherwise it would
automatically generate a RENEW message to extend the lease
at t5. However, we cannot obtain the exact time point of
disconnecting although we know it must be at a time point
between t3 and t5. Therefore, we choose the midpoint of 3
and t5 (i.e., t4) to approximate the disconnection time point.
Based on it, we can further determine the time point of the
EXPIRE message under the new leasing strategy, which should
be the time point of the last RENEW message under the new
strategy plus the new lease time.

In fact, the replay algorithm presents a way to evaluate any
method that aims to improve DHCP performance by designing
leasing strategies. For a formal pseudo-code presentation of
this algorithm, please refer to Appendix A.
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E. Performance Evaluation of Our Strategy

In previous sections, we determine parameters of our leasing
strategy using the data of the week from May 13th, 2017 to
May 19th, 2017. Now we try to apply the leasing strategy in
subsequent weeks and evaluate its effectiveness based on the
replay algorithm. For brevity, we only present the simulation
results of the week from May 20th, 2017 to May 26th,
2017. For the information about more weeks, please refer
to Appendix C. We employ three state-of-the-art methods as
baselines to compare with our method. These state-of-the-art
methods are introduced as follows:

Single Adaptation [10]: It sets a long lease time for initial
lease request, and reduces the lease time for the subsequent
renewal requests. The assumption behind this method is that a
device is more likely to disconnect from the wireless network
as its online time increases. In our experiments, we use the
setting and parameters proposed by the authors in [10]. The
lease time for the first request is set to 90 minutes, and for
the subsequent renewal requests it is set to 30 minutes.

Exponential Adaptation [10]: It allocates a short lease time
when a device first arrives, and doubles the lease time every
time the device initiates a renewal request until the time setting
reaches an upper bound. This method makes an assumption
that a device tends to connect to the network longer if a client
has been active long enough. In [10], the authors aim to reduce
the server load and set the upper bound to a large value, which
would result in serious resource waste. In order to be fair in
our performance evaluation, we find the best parameter setting
by enumeration. The upper bound is set to 60 minutes and the
initial value is set to 15 minutes, which is the best to balance
the address usage and server load.

OS-based Differential Lease [8]: It allocates different lease
times for different device OSes to minimize the number of
IP addresses at the rush hour and the DHCP server load.
These two goals cannot be achieved at the same time, and the
author did not present how they choose the tradeoff clearly.
In the experiments, we use the same optimization objective as
our strategy, ¢.e., the DHCP server load should not increase
beyond 30%. Under this condition, we choose the setting for

each OS to minimize the number of assigned addresses. We
plot figures to show the trends of the DHCP server load and
the peak number of assigned IP addresses with the change
of the lease time for different OSes, which can be referred
to Appendix B. Based on them, we can get the most proper
leasing settings for this strategy. For Android, i0S, Windows
and MAC OS, the lease times are set to 24 minutes, 22
minutes, 28 minutes and 26 minutes respectively. For other
OSes, the lease times are set to 30 minutes.

We employ the following four metrics to evaluate the
performance of DHCP under different leasing strategies.

IP address usage: It refers to the number of assigned IP
addresses at a time point, especially at the rush hour, which
is one of the most important optimization goals.

DHCP server load: It is measured by the number of request
messages and response messages received by the DHCP server.

Total lease time: It is the length of the period during which
a device occupies the IP address assigned by the DHCP server
in a lease.

IP address utilization: It is defined in Eq. (1), and reflects
the proportion of IP addresses used by common devices at a
time point. In general, a high IP address utilization means that
most addresses are used efficiently.

Now we compare our proposed method with the three
baseline methods and the original leasing strategy with a fixed
lease time in TWLAN.

Fig. 11(a) shows the number of assigned IP addresses during
the week, in which the smaller inner plot represents the peak
number of IP addresses at the rush hour for each day. Fig.
11(b) shows the normalized DHCP server load during the
week. We observe that the number of assigned IP addresses
can be reduced significantly if our proposed method is applied.
At the rush hour, it saves more than 6000 IP addresses (reduced
by about 24%, which is consistent with the result in Section
V-C). Meanwhile, DHCP server load increases by about 25%
on average, which satisfies the requirement that the server
load should not increase beyond 30%. However, for OS-based
Differential Lease strategy, although the overall IP address
usage is better than that in the original leasing strategy, the
trend fluctuates greatly. The peak number of assigned IP
addresses is only reduced by about 10%, which is far less
effective than our method. Besides, DHCP server load also
increases by about 20%, which is comparable with our method.
It means that the dimension of OS alone cannot accurately
reflect the device online patterns in the large-scale wireless
network environment. For Single Adaptation and Exponential
Adaptation, although the increment of DHCP server load is not
obvious, the peak number of assigned IP addresses is close to
that in the original leasing strategy (even larger in some cases).
It reflects that behavior characteristics vary for different users
and the basic assumptions for the two leasing strategies do
not necessarily apply to all devices. A good leasing strategy
should differentiate diverse user behaviors. In summary, the
experiment results of IP address usage and DHCP server load
demonstrate that the our leasing strategy is effective.

Fig. 12(a) shows the CDF of the total lease time for all
devices under different leasing strategies. We find that the
average total lease time is reduced by 17% in our method and
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it is more close to the active online time of a user, which means
that the assigned IP addresses can be reclaimed in time, while
the average total lease time under other baseline strategies
is even longer than that under the original leasing strategy.
Fig. 12(b) presents IP address utilization. We observe that
our method achieves a significant improvement on IP address
utilization compared with other baseline methods, and it is
about 10% higher than the original leasing strategy. We believe
it benefits from that our method carefully distinguishes be-
tween authenticated and non-authenticated users. In summary,
the experiment results demonstrate that our method greatly
improves the usage efficiency of assigned IP addresses.

VI. ADAPTIVE ADDRESS DIVISION

Although the leasing strategy presented in Section V can
significantly reduce the waste of IP addresses, it is still
possible that some devices cannot get addresses if the number
of concurrent users exceeds the total number of IP addresses in
the corresponding address pool. The analysis in Section IV-A
has shown that the experience-based address division strategy
currently used in TWLAN is not satisfactory. We find that
there is a significant difference in the number of demanded IP
addresses of each day for a given pool, which reveals that a
fixed pool size may not be reasonable. Therefore, we propose
an adaptive address division strategy to improve the IP address
pool utilization Up;.

A. The Design of Adaptive Address Division Strategy

Let us name the number of IP addresses demanded by users
of an address pool as demanded pool size. The basic idea
is to split the address space for address pools according to
the demanded size of each pool. The problem is how we can

predict the demanded size of a pool in a day in advance? If we
can predict the demanded pool size, we can just proportionally
allocate addresses to pools according to their demands at the
beginning of each day.

Although the trend of the number of assigned IP addresses
for each address pool has a strong daily pattern, the day-to-day
peak value varies a lot, and it is difficult to predict from the
historical data because the user behavior is independent and
there may exist burst due to important events in some days.
Fortunately, we find that the peak value of a day is likely
to have a strong correlation with the number of assigned IP
addresses earlier in the day. Considering that the peak value
generally appears after 10:00, we expect that we can make a
prediction based on the previous trend (before 10:00) and re-
divide addresses to meet the real demand of each pool. From
0:00 to 6:00, there are few assigned IP addresses and the trend
has no obvious change, which prevents us from extracting
valuable features from the period. As a result, we aim to
predict the peak value of demanded addresses by extracting
features from 6:00 to 9:00 so that IP addresses can be re-
divided before 10:00.

The design of the adaptive address division strategy is based
on a supervised machine learning regression model. In the
training phase, we continuously collect DHCP logs for two
months. After that, for each pool, we extract the values of the
features selected by us to form a feature vector and find the
corresponding demanded pool size in each day. These data
will be used to train a regression model. In the prediction
phase, after feeding the newly obtained feature vector into
the model, the demanded pool size can be predicted. In this
work, we choose Random Forest Regression as the prediction
model, which has been proven effective in many application
scenarios, e.g., WiFi performance and Internet path latency
prediction [26-28]. The experiments presented in Appendix
D also show that Random Forest based model outperforms
other popular regression models.

Inspired by the previous works [26, 28], we empirically
exploit 18 statistics of the curve of the number of assigned
IP addresses during the period from 6:00 to 9:00 as candidate
features. We name them as curve features. Besides, we observe
that the trends at weekends are significantly different from
those on weekdays. To improve the accuracy, we add a
temporal feature to distinguish weekends from weekdays.



We further select the most effective features from these 19
candidate features based on relative information gain (RIG)
[27], which reflects the reduction percentage of the uncertainty
of the predicted target after knowing the value of a certain
feature. The detailed description and the RIG values of these
candidate features are presented in Appendix E. Among all
candidate features, six of curve features have RIG lower than
0.01, therefore we exclude them. The other 12 curve features
are selected, ¢.e., the number of assigned IP addresses in 6:00,
7:00, 8:00 and 9:00, the average value from 6:00 to 8:00,
the average value from 7:00 to 9:00, the 25th, 50th and 75th
percentiles of the number of assigned IP addresses from 6:00
to 9:00, and the 50th and 75th percentiles and the maximum
of curve gradient from 6:00 to 9:00 respectively. The RIG for
the temporal feature is also relatively high, which means that
it is valuable for the prediction model. Therefore, we retain
the temporal feature.

B. Evaluation of Adaptive Address Division Strategy

In this part, we evaluate the performance of the proposed
adaptive address division strategy. We first focus on the
accuracy of the prediction model (Random Forest Regression)
and adopt the coefficient of determination R? and the relative
error as the evaluation metrics, which are respectively defined
as Eq. (3) and Eq. (4),
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ni Yi

where n represents the number of test samples, y represents the
real peak values of the test samples, ¢ represents the average
value of y, and 7 represents the predicted values. R? measures
how well the regression prediction values approximate the real
data points. The closer R? is to 1, the better the prediction
values fit the real data points. Relative error measures the
significance of the prediction error. The smaller relative error
is, the less significant the prediction errors are, and the better
the prediction results are.

Fig. 13 shows the prediction results of Random Forest
Regression on the test data. X-axis and Y-axis respectively
represent the true address demand and the predicted address
demand. We use the line y = x as the baseline, which
represents that the predicted values are exactly the same as
the real values. We can see that almost all of the points are
near the baseline and present a positive linear correlation. The
value of R? is about 0.96 and the relative error is about 2.8%,
which indicate the effectiveness of the prediction model.

Let § represent the absolute value of the difference between
the predicted value and the true value. We plot Fig 14(a) to
show the distribution of §. We find that almost all values of
0 on the test data are less than 256, which is equivalent to
the size of a /24 address block. There are only few large
values (less than 0.5%), and they are caused by unusual bursts
(e.g., large-scale and school-wide activities in one location),
which are not representative and can be omitted. Therefore,
in practice, to reduce the risk of address shortage, we use the
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Fig. 13: The prediction results of Random Forest Regression
on the test data.
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Fig. 14: (a). The distribution of the absolute value of the
difference between the predicted value and the true value. (b).
The results of the IP address pool utilization for the 5 typical
pools after using the adaptive address division strategy and the
leasing optimization strategy.

sum of the predicted value and 256 as the demanded pool
size for a pool. Furthermore, by convention, we use /24 as
the granularity of address allocation among pools.

Finally, we simultaneously deploy both the adaptive ad-
dress division strategy and the leasing optimization strategy
proposed in the previous section, and evaluate the IP address
pool utilization for the 5 typical address pools mentioned in
Section IV-A on the data of the week from May 20th, 2017 to
May 26th, 2017. As shown in Fig 14(b), compared with the
original experience-based strategy, our strategy can balance
the Upyo for all pools. We can see that the address pool
utilization is around 70% for all 5 pools. At the same time, the
leasing optimization strategy effectively reduces the demanded
size of each pool. For example, pool 1, pool 2 and pool 3
avoid the address exhaustion problem successfully (Upoo < 1)
and the address pool utilization is reduced significantly, while
pool 4 and pool 5 have a larger Up,,,;, which means we can
make full use of addresses. In summary, the proposed adaptive
address division strategy together with the leasing optimization
strategy achieves a good result that all pools have available
capacity to satisfy more concurrent users.

VII. RELATED WORK

There exists some research related to our work [8-11, 24,
29-31]. Brik et al. describe the potential problems of DHCP
[9]. Das et al. propose that setting shorter lease time for
handheld devices can improve the address utilization [24, 29].
Khadilkar et al. explore two leasing strategies to optimize IP
address usage and DHCP server load [10]. Papapanagiotou
et al. carefully study the behavior of DHCP for different
device types and OSes, and further propose a leasing strategy
that takes into account the differences between devices [8]. Li



et al. design a load-aware algorithm to set lease time with
the aim of reducing the DHCP overhead [11]. In [30], the
authors theoretically analyze the effect of lease time setting
on the address usage and the DHCP server load. Although
above studies have tried to improve DHCP performance from
the perspective of the lease time, optimization goals of some
of them are different from ours. Furthermore, all of them are
designed for simple network environments and do not take
account of a lot of useful information (e.g., location and au-
thentication information), therefore they cannot be adapted to
the complex network environment such as TWLAN. Besides,
none of them systematically analyze the problems of the lease
time setting, such as the impact of non-authenticated users on
IP address utilization, and most of them do not consider the
effect of the address division strategy in large-scale wireless
networks. Our work fills the gaps. This paper extends our
previous work [32] in the following aspects. We analyze the
problem of the experience-based address division strategy and
propose an adaptive division strategy to further reduce the
risk of address exhaustion. We describe the design of DHCP
replay algorithm in detail, and conduct more experiments to
compare the proposed leasing strategy with three baselines to
demonstrate the effectiveness of our strategy.

Many previous works propose different methods to identify
the types and OSes of devices [8, 22-24]. Papapanagiotou
et al. [8] present that some fields of DHCP messages can be
used to identify OSes of devices. However, users are likely
to modify some fields (e.g., Host Name) to hide the device
information, which brings a great challenge for identification.
Some works [22, 23] identify OSes of devices by HTTP user
agent information. However, it fails to deal with the cases
in which user agent information is modified or not provided.
Das et al. [24] notice that the fields in DHCP messages and
the user agent in HTTP messages can complement each other
in the identification of device types. However, they mainly
focus on the identification of device types. In our work, we
propose an improved method that combines more fields of
DHCEP logs with HTTP user-agent information to identify both
types and OSes of devices. The results show that the new
method achieves a satisfactory recognition rate.

VIII. CONCLUSION

To the best of our knowledge, we conduct the largest scale
measurement on the behavior and performance of DHCP.
Despite its wide usage, the performance of DHCP is far from
satisfactory. About 25% of IP addresses are inefficiently used
due to non-common devices, and the address pool utilization
varies greatly across pools. Besides, 67% of the total lease
time of assigned addresses is wasted on average. Non-common
devices generally exist in various wireless networks, and they
occupy IP addresses but do not use networks really. Large-
scale wireless networks are generally divided into multiple
subnets to facilitate network management, but how to split the
address space among subnets is usually determined empiri-
cally. Therefore, the DHCP inefficiency reported in Section
IV is a general problem in large-scale wireless networks,
especially those with authentication mechanisms.

Motivated by these findings, we propose a leasing strategy
and an adaptive address division strategy to improve the per-
formance of DHCP. Experiments show that the leasing strategy
can reduce the total number of assigned IP addresses by 24%,
and the adaptive address division strategy can further reduce
the risk of address exhaustion for each pool. In our solution,
the first proposal is to distinguish non-common devices from
common devices and give non-common devices shorter leases.
It should be useful and effective in all wireless networks.
The second proposal is to give devices different lease times
according to their attributes, such as locations, types and OSes.
The basic idea of this proposal should be effective for all
wireless networks, but the online patterns and the influential
attributes may not be the same. In case that no clear pattern is
found, we can still set the same lease time for all devices and
the value of the lease time is determined by the data-driven
method, which should be better than the current experience-
based setting. The third proposal is to split the address space
according to the predicted demand of pools. The basic idea
of this proposal can be effectively used in various wireless
networks, but the model proposed by us to predict the demand
needs to be examined case by case or type by type.

We believe that our work is a meaningful step towards a
better understanding of DHCP behavior and the improvement
of DHCP performance in complex wireless network environ-
ments. We are promoting the deployment of the proposed
leasing strategy and the adaptive address division strategy in
TWLAN. We hope the real-world deployment in production
networks can provide more valuable insights towards better
DHCP performance.
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APPENDIX
A. The Design of the Replay Algorithm

The replay algorithm is essential for the data-driven analysis
and the performance evaluation, therefore we present the
design in detail in Algorithm 1. It presents a way to evaluate
any method that aims to improve DHCP performance by
designing leasing strategies.

When replaying DHCP logs, we mainly focus on the
RENEW and EXPIRE messages because they are affected by
the user behavior as well as the leasing strategy in use. As
the leasing strategy changes, RENEW and EXPIRE messages
would be generated at different timepoints.

(1) Generating RENEW messages in Algorithm 1

Line 11-13 are about how we deal with lease extension
RENEW messages. The appearance of lease extension RENEW
messages means that devices automatically request for lease
extensions. Obviously, the time point to generate this kind of
messages is closely related to the leasing strategy in use. If
the lease time changes, these messages should be generated
at different timepoints. Therefore, when replaying, we should
ignore this kind of messages in the original DHCP logs, and
generate new RENEW messages according to the new leasing
strategy.

Line 14-15 and line 20 are about how we deal with
init-reboot RENEW messages. The appearance of init-reboot
RENEW messages is due to the user behavior, such as as
rebooting systems, wakening displays, and re-activating WiFi
interfaces. We need to copy this type of messages to the
new DHCP logs because the real-world user behavior should
remain the same when replaying, which means that the time to
generate init-reboot RENEW messages under the new leasing
strategy should be the same with that under the original leasing
strategy.

Besides, as shown in line 16-19, between two successive
init-reboot RENEW messages, we need to generate lease
extension RENEW messages periodically based on the new
leasing strategy.

(2) Generating EXPIRE messages in Algorithm 1

As shown in line 21, if one record in the original DHCP logs
is an EXPIRE message, it means the end of the corresponding
original lease. We show an example of a complete original
lease in Fig. 15. If the lease is expired in ts and the last
renewal request is initiated at £3. We can infer that the device
has been disconnected from the AP at ¢5 (i.e., the sum of
ts and the half of the original lease time), otherwise it would
automatically generate a RENEW message to extend the lease.
Therefore, we choose the midpoint of ¢3 and ¢5 (i.e., t4) to
approximate the exact timepoint of disconnecting during the
period from ¢35 and ¢5. The interval between t4 and ¢3 is one
quarter of the original lease time. When replaying, in line 23,
we first get the approximate timepoint of disconnecting by
adding the initiated time of the last RENEW message and one
quarter of the original lease time. After that, as shown in line
24-26, we need to generate lease extension RENEW messages
periodically (i.e., half of the new lease time) based on the new
leasing strategy before the timepoint of disconnecting. Finally,

Algorithm 1 Replay Algorithm for Leases in DHCP Log

Input: Original lease L, Parameter x
Output: New lease newLease

I: newTime = L.leaseTime/x;

2: if L.device not in Common Device Database then
3: newTime = 5;

4: else

5: newTime = getLeaseTime(L.location, L.OS)/x;
6

7

8

. Initialize a new lease newLease;
: for i =1 to L.length do
if L[i].description == ASSIGN or RELEASE then

o: append L[i] to newLease;

10: if L[i].description == RENEW then

11: if L[4] is not init-reboot request then

12: /I The case of lease extension request
13: continue;

14: else

15: /I The case of init-reboot request

16: t = time for last entry in newLease;
17: while ¢ + newTime/2 < Ll[i].time do
18: t =t + newTime/2;

19: append RENEW at t to newLease;
20: append L[i] to newLease;
21:  if L[i].description == EXPIRE then
22: t = time for last entry in new Lease;

23: tmp = L[i — 1].time + L.leaseTime/4;
24: while ¢ + newTime/2 < tmp do

25: t =t + newTime/2;
26: append RENEW at t to newLease;

27: append EXPIRE at t + newTlime to newLease;
28: if L[i].description == EXHAUSTED then
29: if There exist available IP addresses in pool then
30: append a complete lease to newLease;
31: break;

32: else

33: append L[i] to newLease;

34: if L[i].description == Others then

35: append L[i] to newLease;

36: return newLease
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Fig. 15: Find the time point when a device disconnects from
the wireless network in a complete lease.

we will generate the EXPIRE messages accordingly when the
new leases expire (line 27).

B. Lease time settings for the baseline strategy

The OS-based Differential Lease strategy allocates different
lease times for different device OSes to minimize the number
of IP addresses at the rush hour and the DHCP server load.
To determine the optimal lease time settings for the strategy,
we plot Fig. 16 to show the trends of the DHCP server load
and the peak number of assigned IP addresses with the change
of the lease time for different OSes. From it, we can see that
for Android, i0OS, Windows and MAC OS, the lease times
should be set to 24 minutes, 22 minutes, 28 minutes and 26
minutes respectively. For other OSes, the lease times are set



—e— Server Load 1.05 30 —e— Server Load 1.05
30 — IP Address —— IP Address
1.00 1.00
T25 ©2.5 9
8 0950 B 0.950
—20 o 2o ]
I 0.905 o 0.900
g } s 2 ) ) <
€15 Lease Time =24 min 0.85<C oLs Lease Time =22 min 0.8500
&5t S o 0 =
10 j 0.80 1.0 i 0.80
10 20 30 40 50 10 20 30 40 50

Lease Time (Android)

(a) Android

Lease Time (i0S)
(b) i0S

3.0 —e— Server Load 1.05 3.5 —e— Server Load 1.05
— IP Address 1.00 3.0 —— IP Address 1.00
EZ.S % - "
o 0950 ©2.5 095§
-0 = o o
iy =R S
9] 0.90T 52-0 0.905
51.5 Lease Time =28 min < >S1s Lease Time =26 min <
i3} 0.850- @1 0.850-
N ]
1.0 | 0.80 Lo | 0.80
10 20 30 40 50 10 20 30 40 50

Lease Time (Windows)
(c) Windows

Lease Time (MAC 0S)
(d) MAC OS

Fig. 16: Find the most proper leasing settings for different types of OSes (Android: 24min; iOS: 22min; Windows: 28min;
MAC OS: 26min). Figures for other OSes are omitted because of their small proportions and similar trends. The lease times

for them are set to 30min.

First Week Data
. 400 ) Second Week Data
L
2 300
E 200 A,
E 100 o i e o
= P T — P P
0| &k = 4 L L =
Cafeteria Dormitory G i cl strative  Research
Building Building Building
(@)
First Week Data
. 400 I"""""""7 Second Week Data
o]
2 300
E 200 e
2 = o - o
i
£ 100 P I P 1 i
— = —i L L P
o N —t ! Lo — = [
IoT Windows MAC OS Linux iOS Android Windows
Device Phone

Fig. 17: (a). Comparison of the online pattern of devices
of different locations for two weeks. (b). Comparison of the
online pattern of devices of different OSes for two weeks.

to 30 minutes. We omit the figures for them because of their
small proportions and similar trends.

C. Experiments on the data of Another Week

For brevity, in the paper we only present the measurement
results on the DHCP inefficiency issue and the performance
evaluation of our solution based on the data of one week.
Here, we would like to present more results to validate our
observations in the paper. We will show the online pattern
for devices of different locations and OSes is similar across
different weeks. Besides, we further use the data of another
week to demonstrate the similar DHCP inefficiency behavior
and validate the effectiveness of the proposed leasing strategy.
(1) Similar online pattern across different weeks

We make boxplots to compare the active online time dis-
tributions of devices of different locations and OSes in the
week from May 20th, 2017 to May 26th, 2017 with that in
the week from May 27th, 2017 to June 2th, 2017. As shown in
Fig. 17(a) and Fig. 17(b), we can see that there is no obvious
change across the two weeks, which means that the behavior
of user devices shows a weekly pattern and the data from one
week should be sufficient to characterize the user behavior of
this campus network.

(2) Similar DHCP inefficiency and effectiveness evaluation of
the new leasing strategy

In our work, we report the inefficiency of the original
leasing strategy in TWLAN and the effectiveness of our
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Fig. 18: (a). The trends of the number of assigned IP addresses
during the new week. (b). The normalized DHCP server load
during the new week.
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proposed leasing strategy based on the data of the week from
May 20th, 2017 to May 26th, 2017. Here we further show the
measurement and evaluation results using the data of another
week from May 27th, 2017 to June 2th, 2017. Note that when
we replay the DHCP logs of the new week, the setting of our
proposed leasing strategy remains the same as that used for
the evaluation in the paper, which is determined by the data of
the week from May 13th, 2017 to May 19th, 2017 in Section
V-C.



The results confirm that the main conclusions in the paper
also hold for our experiments on the data of the new week.
Here, we present figures and summarize the new results as
follows.

o The proposed leasing strategy can make a desired tradeoff
between the DHCP server load and the peak number of
assigned addresses during the new week. Fig. 18(a) shows
the number of assigned IP addresses and Fig. 18(b) shows
the normalized DHCP server load during the new week.
We observe that the experimental results are consistent
with that in the previous week presented in Section V-
E. The peak number of assigned IP addresses under our
proposed leasing strategy is reduced significantly and the
DHCEP server load never increases beyond 30%.

e During the new week, the active online time of devices
is far less than the total lease time on average, and the
proposed leasing strategy can effectively reduce the gap.
The CDF of the total lease time for all devices in the
new week is shown in Fig. 19(a). We can see that in the
original leasing strategy, there is still a large gap between
the total lease time and the active time, which means
that a large number of IP addresses are inefficiently used
in the new week. The conclusion is consistent with that
presented in Section I'V-B. Furthermore, we find that the
proposed leasing strategy still can effectively reduce the
average total lease time and outperforms other strategies.

e During the new week, non-common devices lead to a
great waste of IP addresses, and the proposed leasing
strategy can effectively improve the address utilization.
We show the IP address utilization in Fig. 19(b). We
can see that in the original leasing strategy, about 26%
of IP addresses are assigned to non-common devices,
which means that the negative effect of the authentication
mechanism on DHCP performance is still serious and the
proportion is very close to that reported in Section IV-A.
What’s more, the new leasing strategy can improve it by
about 12%.

The above observations show that our conclusions are valid
across different weeks. Besides, it is worth mentioning that
our method is data-driven. To ensure the effectiveness of the
leasing strategy, the parameters (¢.e., common device database,
online patterns of authenticated users and parameter x) of the
leasing strategy can be updated periodically.

D. Performance Comparison for Different Regression Models

In Section VI-A, we choose the Random Forest Regression
model to predict the peak value of demanded addresses for
each pool. In order to further demonstrate the superiority of
Random Forest Regression, we compare it with 6 popular re-
gression prediction methods (i.e., Linear Regression, Logistic
Regression, Bayesian Regression, Decision Tree Regression,
SVM Regression, Gradient Boosting Regression). The results
of 10-fold cross validation are presented in Fig. 20. We find
that Random Forest Regression outperforms other regression
algorithms on R?, which means that the Random Forest based
model is more effective in this problem.
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Fig. 20: Comparison between Random Forest Regression and
the other 6 popular regression algorithms.

TABLE II: Relative information gain for all features.

Category Index Feature RIG
1 #(assigned IP addresses in 6:00) 0.08
2 #(assigned IP addresses in 7:00) 0.11
3 #(assigned IP addresses in 8:00) 0.19
4 #(assigned IP addresses in 9:00) 0.16
5 average value from 6:00 to 8:00 0.08
6 average value from 7:00 to 9:00 0.26
7 25th percentile of #(IP addresses) 0.09
from 6:00 to 9:00
Curve Features 8 50th percentile of #(IP addresses) 0.12
(only retain top from 6:00 to 9:00
12 features) 9 75th percentile of #(IP addresses) 0.15
from 6:00 to 9:00
10 50th percentile of curve gradient 0.09
11 75th percentile of curve gradient 0.16
12 maximum of curve gradient 0.21
13 minimum of curve gradient
14 25th percentile of curve gradient
15 curve gradient in 6:00 <
16 curve gradient in 7:00 0.01
17 curve gradient in 8:00
18 curve gradient in 9:00
Temporal Feature 19 weekends or weekdays 0.15

E. Feature Selection for the Prediction Model

In order to predict the peak value of demanded addresses
for each pool based on the Random Forest Regression model,
we empirically extract /8 curve features from 6:00 to 9:00 to
represent the changes of the number of assigned IP addresses
and the growth rate, and / temporal feature to distinguish
weekends from weekdays. The detailed description of these 19
candidate features is shown in Table II. Then we adopt relative
information gain (RIG) to select the most significant features.
RIG can reflect the reduction percentage of the uncertainty of
the predicted target after knowing the value of a certain feature
(i.e., the contribution to the prediction task). The values of
RIG for the 19 candidate features are presented in the fourth
column in Table II. We ignore the candidate features in the
rows from the 13th to 18th because of their low RIG values
(lower than 0.01), and the top 12 curve features are selected
to be used in our prediction model. We also notice that the
average number of assigned IP addresses from 7:00 to 9:00
and the maximum of curve gradient contribute the most to this
prediction task, and the temporal feature is also very valuable
for prediction.



