
FedPA: an Adaptively Partial Model Aggregation Strategy in Federated Learning

Juncai Liua, Jessie Hui Wanga, Chenghao Ronga, Yuedong Xub, Tao Yua, Jilong Wanga

aInstitute for Network Sciences and Cyberspace, BNRist, Tsinghua University
bSchool of Information Science and Engineering, Fudan University

Abstract

Federated Learning has sparked increasing interest as a promising approach to utilize large amounts of data stored on
network edge devices. Federated Averaging is the most widely accepted Federated Learning framework. In Federated
Averaging, the server keeps waiting for client models to compute the global model in each round unless all client
models are received or a pre-configured timer expires, therefore it suffers seriously from participant devices with weak
computation and/or communication capability, which is a kind of straggler problem. In this paper we design FedPA,
a framework based on partial model aggregation strategy, in which the server waits for only an appropriate number of
device models (referred to as aggregation number) in each round. Our experiment shows that the accuracy loss of the
aggregated global model in a single round is not significant if the aggregation number is decided carefully. We propose
a waiting strategy to determine the aggregation number for each round dynamically and the aggregation number is
adaptive to achieve a tradeoff between single-round training time and the expected number of rounds to reach the target
accuracy. Stale models are also included during aggregation when they arrive, and their positive value and negative
effect are carefully evaluated and reflected in the aggregation strategy. Experiments show that FedPA outperforms the
baseline strategy FedAvg and other three algorithms named FedAsync, FLANP and AD-SG. It can work well in all
scenarios with different distributions of data samples (characterized by non-IID ratio) and computation/communication
capability (characterized by level of heterogeneity) among devices. Experiments also show that FedPA is robust when a
certain amount of noise is added into the input from clients for privacy concerns.

Keywords: Federated Learning, Aggregation Strategy, Straggler Problem

1. Introduction

It was reported that there had been 3 billion active
smartphones [1] and nearly 7 billion connected Internet
of Things (IoT) devices [2] all over the world, and the
numbers kept increasing in these years. These devices
continuously generate large volumes of data, e.g., photos,
voice, keystrokes, which are valuable for machine learn-
ing applications to train better models. By using data
from mobile devices or IoT devices, some machine learn-
ing applications, such as image or video classification [3][4],
speech recognition [5], and Smart Keyboard [6], can signif-
icantly improve the experience of users of these services.
Meanwhile, edge devices are equipped with more powerful
computation capability than before. It is expected that
AI components will be embedded in most end devices in
the near future [7][8], which means that these end devices
can participate in model training tasks and complete some
computation jobs.

Federated Learning [9][10] is a model training frame-
work in which each end device uses its own data and com-
putation capability to train its local device model and a

∗Corresponding author
Email address: jessiewang@tsinghua.edu.cn (Jessie Hui

Wang)

shared global model is generated by aggregating all local
device models submitted by the participant devices in the
training task. As shown in Figure 1, in each round, the
server randomly selects a subset of clients and distributes
model parameters to the selected clients (Step 1). These
clients update the model locally using their local data and
get their individual device models (Step 2). It is required
that these devices should upload their device models to
the server (Step 3). The server waits for these device mod-
els and aggregates the models received to obtain a global
model to complete a round (Step 4). The above proce-
dures repeat for a lot of rounds until the accuracy of the
global model becomes satisfactory.

Federated learning is a promising model training frame-
work. However, it still faces some challenges. End devices
are heterogenous and unstable. They are not dedicated
to model training tasks. Therefore their performance and
availability cannot be guaranteed during training. Some
end devices are equipped with powerful computing capa-
bilities and larger network bandwidth, and they can com-
plete their local training very fast. Some devices are less
powerful in computation and/or communication, and their
device models will arrive at the server very late. Further-
more, some devices may go offline during training due to a
lack of battery power or an unreliable network connection,

Preprint submitted to Elsevier September 26, 2021

Server

client

…

Data

1. Download model parameters

2. Train the model locally with local data

3. Upload the new model parameters

4. Aggregate client models

Figure 1: Federated Learning

and their device models will never arrive at the server.
In Federated Learning, Federated Averaging (FedAvg) [9]

is the most widely accepted algorithm, in which the server
keeps waiting for client models to compute the global model
unless all client models have been received or a pre-configured
timer expires. Obviously, if one or some clients are very
slow, the server and other devices have to be idle for a
long period, which increases the training time. These slow
clients are referred to as stragglers and the relevant prob-
lem is named as straggler problem.

In FedAvg, all participants are required to be syn-
chronous, which is the reason for the straggler problem.
Researchers try to propose asynchronous [11] or semi-
synchronous [12] methods to mitigate or eliminate the strag-
gler problem. However, these methods converge slowly
when the data samples among end devices are unbalanced
and non-IID (identically and independently distributed)
[13][14][15][16].

Intuitively, if the server aggregates only the client mod-
els from fast devices in a round and starts the next round
without further waiting for client models from slow de-
vices, the training time for this single round would be
shortened. However, the training accuracy of the aggre-
gated global model in this round is in doubt, and it may
require more rounds to reach a satisfactory accuracy.

We conduct experiments to see the resulting accuracy
when the server only aggregates a part of participants in
a round. We refer to it as partial model aggregation strat-
egy, and the number of client models used by the server
is referred to as aggregation number of this round. Ex-
periments show that the accuracy loss is not significant if
the aggregation number is decided carefully. We further
notice that the accuracy of the global model under our
partial aggregation strategy is affected by the distribution
of data samples among devices. Roughly speaking, the ac-
curacy loss tends to be larger under the same aggregation
number when the devices are more different in terms of
the data samples owned by them. We can see that how
to determine the aggregation number in each round is the
key problem for the performance of the partial model ag-
gregation strategy.

Based on the above observations from the experiments,
we design and implement FedPA (Federated Partial Ag-
gregation), a framework aiming to improve the efficiency
of federated learning through a partial model aggrega-
tion strategy. FedPA uses reinforcement learning agent to
adaptively determine the appropriate aggregation number
in each round, and the aggregation number is adaptive to
the data distribution of the selected devices and the het-
erogeneity of device capability. By making the aggregation
number in each round adaptive and dynamic, it achieves a
tradeoff between the training time taken by a single round
and the expected number of rounds to reach the target
accuracy.

A stale model arrives later but obviously it may have
valuable information to improve the accuracy of the global
model in the round, especially when the local models from
this device have never been aggregated in global models
of earlier rounds. On the other hand, stale models are
trained from expired global models, which means placing
too much emphasis on stale models can have negative influ-
ence on the convergence of the training process. Therefore,
FedPA utilizes stale models instead of discarding them, but
weighting factors are used to reflect the value of stale mod-
els. We propose an aggregation strategy which includes
both fresh models and stale models and the weighted fac-
tor is determined based on the staleness of stale models
and the number of data samples they represent.

We have implemented FedPA using TensorFlow. We
conduct experiments to explore the influence factors of
the output of the reinforcement learning agent and the
robustness of FedPA when a certain amount of noise is
added into the input for privacy concerns. We evaluate
its performance by conducting various federated learning
tasks. Our experimental results show that our strategy
outperforms traditional Federated Averaging strategy and
other three algorithms called FedAsync, FLANP and AD-
SGD on the CIFAR-10 dataset and the MINIST dataset.
Furthermore, FedPA can work well in all scenarios with
different distributions of data samples (characterized by
non-IID ratio) and computation/communication capabil-
ity (characterized by level of heterogeneity) among devices.

The rest of this paper is organized as follows. Section
2 summarizes related works on improving the efficiency
of federated learning. In Section 3, we introduce a pre-
liminary study on partial model aggregation, which shows
the resulting accuracy when the server only aggregates a
part of participants in a round and shows the influence
factors to the accuracy of partial aggregation model. In
Section 4, we detail the design of our FedPA framework.
We present and discuss the experimental results in Section
5, and conclude this paper in Section 6.

2. Related Work

Reducing training time is an important research goal in
federated learning and has attracted attention from many
researchers. Parameter synchronization (Step 1 and 3 in

2

Figure 1) is one important bottleneck to achieve this goal.
Generally said, there are two problems that significantly
affect the time overhead of parameter synchronization, i.e.,
communication efficiency problem and straggler problem.

2.1. Improving the communication efficiency of parameter
synchronization

Devices in federated learning are assumed to be lo-
cated at the edge of the Internet, and the communication
resource between a device and the server is often very lim-
ited and should be used efficiently. Therefore, improving
the communication efficiency of parameter synchroniza-
tion is recognized as an important research problem and
many researchers try to accelerate the training process by
reducing the data volume of the communication for pa-
rameter synchronization.

For example, some works have proposed to compress
the trained models and then the size of parameters to be
synchronized is reduced [17][18][19][20][21]. The authors
of [22] and [23] proposed to have clients perform multiple
epochs (instead of a single epoch) of local training in each
individual round of global aggregation. In this way, the fre-
quency of parameter synchronization is reduced and thus
the data volume of the communication is reduced. The au-
thors of [24] proposed that the communication caused by
insignificant updates should be eliminated to reduce the
communication overhead. In their solution, the gradient
updates of the local model should be accumulated, and an
updated device model is sent out until the accumulation
exceeds a preset “significance threshold”.

2.2. Straggler problem

Straggler problem is a conventional problem in the area
of parallel computing and has been noticed in distributed
learning systems [25][26][27][28][29]. For example, an asyn-
chronous solution is proposed in [26]. In this solution, the
server updates the global model immediately once a sin-
gle client model is collected. The updated global model is
distributed to the client that sends the client model, and
then the client can continue for the next round. In this
way, fast clients do not need to wait for slow devices, and
the straggler problem can be mitigated theoretically, but
the training process may converge slowly or even develop
incorrectly if the data distribution among devices is not
independent and identical.

The straggler problem can be more serious in federated
learning with massive mobile devices. In this scenario, the
performance difference between fast mobile devices and
slow mobile devices can be very large (tends to be much
larger than the difference between two virtual machines
in a data center), which means that fast devices need to
wait for a longer period of time. The data distribution
among devices is not independent and identical in this
scenario [13][2], which brings challenges to asynchronous
methods.

There are some research works on straggler problem in
federated learning with mobile devices. There are mainly

two ideas. The first one is to avoid selecting slow nodes
(stragglers) in each round. The second is that the server
does not wait for slow nodes in a round before entering
the next round and stale models from stragglers can be
aggregated into the global model when they arrive later.

As for the first idea, Nishio et.al [30] proposed FedCS,
a protocol that estimates the completion time of each de-
vice and filters out slow devices in the client selection
phase. This method has a potential risk that the final
global model has serious bias and overfits to the data in
the devices with high performance. FLANP, proposed by
Reisizadeh et.al [31], sorts client nodes from fast to slow
according to their completion time. It uses first several
fast nodes for warm-up training, and gradually doubles
the number of participants in the training process until
the model reaches a satisfactory accuracy. FLANP always
chooses participant nodes from fast to slow in each round
and waits for all participants to return results before enter-
ing the next round. Thus, the global model at the warm-
up phase has potential to overfit to the data in those fast
nodes in non-IID scenarios and FLANP may suffer from
stragglers when the number of participants is large.

As for the second idea, FedAsync, proposed by Xie
et.al [11], is a total-asynchronous method. Similar to [26],
this method also converges very slowly (even cannot con-
verge), especially when the data distribution among de-
vices is not independent and identical. SAFA, proposed
by Wu et.al [12], asks all clients to train local models in
each round and do not wait for those straggler nodes in
each round. It aggregates normal and stale models with-
out considering the negative impact of stale models. SAFA
assumes that the client devices have sufficient energy and
computation resources. In this paper, we believe it is
more practical and reasonable that mobile devices have
limited computation and energy resources. Therefore, in
each round, our method only requires a sampled subset of
clients to train local models, which is similar to FedAvg [9].
AD-SGD, proposed by Li et.al [32], aggregates normal and
stale models to speed up convergence. The AD-SGD algo-
rithm needs Hessian approximation matrixes to mitigate
the negative impact of stale models. Therefore, this algo-
rithm requires clients to transmit model parameters and
gradient parameters to the server in each round, which
means the volume of transmitted data is 2X of FedAvg
and FedPA. In the WAN scenario, bandwidth resources are
scarce and data transmission is time-consuming. Trans-
mitting more data means more time needs to be spent on
transmission.

3. Preliminary Study on Partial Model Aggrega-
tion

FedAvg suffers from stragglers seriously and each single
round is likely to take a long time because it tries to aggre-
gate models from all participants in each individual round.
At the other extreme, FedAsync updates the global model
once it receives a single device model. A single round is

3

completed very fast but it has a slow convergence rate,
i.e., it tends to need a lot of rounds to complete the total
training successfully.

It is natural to ask whether we can aggregate models
from a part of participants in each round and start the next
round without further waiting for more client models. We
refer to it as partial model aggregation. The key problem in
this approach is how many models shall be waited before
entering the next round.

In this section, we first present the concept of partial
model aggregation mathematically. Then we conduct ex-
periments to see the results of partial aggregation in a
single round and explore the factors that have influence
on the selection of aggregation number, which helps the
subsequent method design.

3.1. The concept of partial model aggregation

The goal of machine learning is to solve the following
equation to get the optimal model parameters w∗,

w∗ = argmin
w

1

|D|
∑

(xi,yi)∈D

f(w;xi, yi), (1)

where w is the parameter of the model, D is the set of data
samples, and f(w;xi, yi) is the loss function, representing
the loss of inference on data sample (xi, yi) by model w.

In federated learning, each device k (k ∈ [1, N]) has a
subset of data samples, denoted by Dk. Using data sam-
ples in Dk, each device can train a local device model
wk∗. As devices have different data samples, the device
models they get would be different. The server aggregates
these models to generate a global model and expect the
global model can approximately solve the Equation 1. To
improve the optimality of the solution achieved from ag-
gregation, the local training and global aggregation are
conducted for a lot of rounds. Mathematically, the pro-
cess of conventional federated learning algorithm can be
described as follows.

In each round t, the server randomly selects a subset Ct
of devices to participate, where |Ct| < N . Each selected
device k receives the aggregated model of the last round
(denoted by wt−1) from the server and train an updated
local model wkt using Stochastic Gradient Descent (SGD)
algorithm as follows. Note that each device can perform
training of multiple epochs E configured by the algorithm.
We represent wk,τt as the model trained at τ -th epoch. In-

tuitively, wk,0t is the model each device receives, i.e. wt−1
and wk,Et is the updated local model wkt .

local training:

wk,τt = wk,τ−1t − η
∑

(xi,yi)∈Dk 5f(wk,τ−1t ;xi, yi)

|Dk|
, τ ∈ [1, E]

where η is the configured learning rate of the algorithm.
The server waits for the local models from these devices

k ∈ Ct, and aggregates them to obtain an updated global

model of round t. Mathematically, we denote the global
aggregation as follows.

global aggregation (all participants):

wt = A([wkt ∀k ∈ Ct])

To mitigate the impact of stragglers, partial aggrega-
tion strategy waits for and aggregates only a part of device
models that arrive early. Mathematically, let S(Ct,m) be
the set of the earliest m devices in the set of selected de-
vices Ct, and in partial aggregation we have

global aggregation (part of participants):

wt(mt) = A([wkt ∀k ∈ S(Ct,mt)])

where mt is the number of device models that should take
part in the global aggregation and we define the model
wt(mt) as mt−aggregated model. Please note that Ct =
S(Ct, |Ct|) and wt = wt(|Ct|) and we define the model
wt(|Ct|) as full aggregated model.

For each round t, if we can find a mt smaller than
|Ct| and wt(mt) does not lose much precision, the concept
of partial aggregation might be a feasible solution to the
straggler problem.

The distribution of data samples among devices may
have an influence on the precision of wt(mt) and the sig-
nificance of each individual device model. Intuitively, if a
device has a special set of data samples (i.e., other devices
do not have), its device model might be very important for
reducing deviation of the aggregated model. As for the dis-
tribution of training data, data is said to be independent
and identical distribution (IID) if it is sampled indepen-
dently from the same joint probability distribution of data
features and labels. All devices will have roughly the same
percentage of data of each label if the training data is IID.
Otherwise, it is said to be non-IID.

In order to evaluate the precision of wt(mt), we com-
pare it to a “benchmark”, i.e., the full aggregated model
wt(|Ct|). Let D(w1, w2) denote the distance between two
models and we use the Manhattan distance to calculate D.
Mathematically we have

D(w1, w2) = ||w1 − w2||.

Then the deviation of wt(m) can be denoted by

θmt = D(wt(m), wt(|Ct|)),

which is the distance between the m−aggregated global
model in round t and the global model aggregated from
all participants in this round.

In the following subsections, we conduct experiments
to see how the deviation of m−aggregated model (i.e., θmt)
changes in each round t and the impact of unbalanced data
distribution on the deviation.

3.2. Experiment settings

In the experiments, we use TensorFlow to train a two-
layer CNN [33] model on the CIFAR-10 dataset. There

4

0 10 20 30 40 50
Rounds

0.0

0.5

1.0

1.5
de

vi
at
io
n
θm t

1e−4
IID

(a) IID

0 10 20 30 40 50
Rounds

0.0

0.5

1.0

1.5

de
vi
at
io
n
θm t

1e−4
non-IID σ = 0.5

(b) non-IID

Figure 2: Deviation of partial aggregated model θmt for different t and m (distance between the m−aggregated model and the global model
aggregated from all participants in each round t). The gray line is θ2t for different t.

15% 20% 25% 30% 35% 40% 45%
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

de
vi
at
io
n
θm t

1e−4
IID m=1
non-IID m=1
IID m=5
non-IID m=5
IID m=15
non-IID m=15

Figure 3: Deviation θmt for different accuracy of aggregated models
wt(|Ct|)

are 100 devices in total, and each device is simulated by
a thread. The local training and global aggregation are
repeated for 50 rounds, i.e., t ∈ [1, 50]. In each round
t, the server randomly selects 30 clients to participate,
i.e., |Ct| = 30. Our server exploits FedAvg, a commonly
used aggregation method in federated learning, to aggre-
gate device models to obtain a partially-aggregated or full-
aggregated global model.

As for IID and non-IID settings, we use a similar ap-
proach to [34] to generate data samples for each device.
In the case of IID setting, data samples are randomly al-
located to 100 devices and thus data samples of all de-
vices have similar distribution among the 10 labels. In
the case of non-IID setting, for each label, we retrieve
σ (0.1 < σ ≤ 1) percentage of data samples with this
label and evenly assign them to 10 random devices. The
remaining samples with this label are assigned to the other
90 devices randomly. We repeat this process for all 10 la-

bels. In this way, the selected 10 devices tend to have
more samples with this label than other devices, and they
also tend to have more samples with this label than other
labels in the same device. σ can be tuned to control the
degree of non-IID, and we name this parameter as non-IID
ratio. As σ increases, it is more likely for an individual de-
vice model to be significant for reducing deviation of the
global aggregated model. We conduct experiments for two
scenarios, i.e., IID and non-IID (σ = 0.5) respectively.

3.3. Experiment results

3.3.1. Deviation of partial aggregated model

We plot the deviation of partial aggregated model θmt
for different t and m in Figure 2. The x axis is labeled
with the round index t (t ∈ [1, 50]). Please remind that
|Ct| = 30 for all t. Therefore there are 30 points in a single
round and each point represents a θmt (m ∈ [1, 30]. We skip
m in the label of x axis for brevity). From Figure 2, we can
see that the deviation of partial aggregated model θmt is
large at the beginning but decreases quickly as m increases
in each round under both scenarios of IID and non-IID,
which means the first some device models have been able
to derive a relatively good aggregated model. It can be
seen that the contribution of each later device model to
reduce the deviation of the aggregated model is small and
negligible in almost all rounds.

3.3.2. Deviation caused by partial aggregation under dif-
ferent non-IID ratio

As we have mentioned, intuitively the partial aggre-
gation may cause a larger deviation in a scenario with a
larger non-IID ratio. We would like to examine whether
this intuition is true.

5

The experiments with different non-IID ratios take dif-
ferent number of rounds to converge at a satisfactory ac-
curacy. To enable the comparison between training tasks
with different convergence rates, we use model accuracy
(the accuracy of the full aggregated model wt(|Ct|) on the
validation set) instead of the index of round (t) to align
the rounds for comparison. For example, we compare the
12-th round of the IID scenario with the 15−th round of
the non-IID scenario with σ = 0.5 since they can reach the
approximately same model accuracy (30%) in this experi-
ment. It can be viewed as that we use model accuracy as
an indicator of the progress percentage of a training task
and we define the accuracy as training progress percentage.
We compare the deviation when the two scenarios have the
same progress percentage.

We plot the deviation θmt and the accuracy of the global
model in the round t in Figure 3. We show the results
for m = 1, m = 5 and m = 15. We can see that the
deviation θmt for a fixed m roughly increases as the training
approaches completion, which has been demonstrated by
the gray lines in Figure 2. It means that if we want to limit
the deviation caused by partial aggregation, we have to use
a larger m in a later round. Furthermore, for fixed model
accuracy (suggesting the same progress percentage), the
non-IID scenario always has a larger deviation under the
same m. It means we should use a larger m to limit the
deviation when the data sample distribution is non-IID.

3.3.3. Summary of observations

Our observations can be summarized as follows and
these observations inspire the subsequent method design.

First, partial aggregation is a promising approach be-
cause the first some arrived device models in each round
have been able to derive a relatively good aggregated model,
with only small precision loss. The contribution of arriv-
ing device models follows the law of diminishing marginal
utility evidently.

Second, how many models shall be waited should be
carefully determined. A fixed value may not be suitable.
At least two factors must be taken into account, i.e., non-
IID ratio and training progress percentage. In order to
keep the deviation under an expected value in each single
round, the server needs to wait for more device models
when non-IID ratio is higher or when the training task
approaches completion.

4. Implementation of Partial Aggregation Feder-
ated Learning

The experiments described in Section 3 demonstrate
that partial aggregation can reduce the training time of
a single round without losing much precision, which indi-
cates that partial aggregation is a promising approach to
accelerate the whole training process. At the same time,
the experiments also show that the aggregation number

of each round (i.e., mt) should be a key to the perfor-
mance of partial aggregation. We name this issue as wait-
ing strategy. The other key issue is that how to aggregate
all received device models to obtain the global model for
the next round (i.e., A), which is named as aggregation
strategy.

Let us assume that a device k receives the global model
aggregated in round t − 1 (i.e., wt−1). It conducts local
training starting from wt−1 and gets an updated device
model. This device model is expected to be used in the
aggregation of round t, therefore it is regarded as a device
model of round t. Assume that the server is waiting for
device models to conduct aggregation to obtain the global
model of round t′ when a device model of round t arrives.
If t′ = t, the device model is called as a fresh model. Other-
wise, we have t′ > t, which means the device model arrives
later than expected, and it is called stale model and t′ − t
is used to measure the staleness of the device model.

A stale model arrives later than expected, but obvi-
ously it may have valuable information to improve the
precision of the global model in the round, especially when
the local models from this device have never been aggre-
gated in global models of earlier rounds. Furthermore, if
only fresh models are considered in the aggregation, the
obtained global models tend to overfit the data samples
in the devices that are always fast, and the samples in
slow devices cannot make contribution to the global mod-
els, which degrades the training accuracy. Therefore, stale
models must be considered during aggregation. On the
other hand, since stale models are trained from expired
global models, placing too much emphasis on stale mod-
els can have negative influence on the convergence of the
training process. If the staleness exceeds the tolerance
range predefined, the device model should not participate
in aggregation. In other words, stale models provide cor-
rections to the optimization direction of the global model,
but they also drag down the training progress. How to ef-
ficiently use stale models is the key issue in designing the
aggregation strategy.

In summary, there are two key problems in our partial
aggregation federated learning system as follows.

• waiting strategy, i.e., How to determine the aggrega-
tion number of a round?

• aggregation strategy, i.e., How to aggregate the col-
lected client models, either fresh or stale, to derive
the global model in a round?

In this section, we will describe how we solve the above
two problems and implement our federated learning sys-
tem.

4.1. Waiting strategy: determining aggregation number via
reinforcement learning

Our partially-aggregation federated learning is in fact a
Markov Decision Process (MDP). In each round, the server

6

performs an action to determine the aggregation number
of this round. Then the server derives a global model
by aggregating received device models and this process
changes the state of the training progress. The goal is to
help the server find an appropriate action to minimize the
total training time to reach the required model accuracy.

4.1.1. DRL (Deep Reinforcement Learning)

Reinforcement learning (RL) is a well-known popular
method to analyze problems related to MDP [35]. RL aims
to enable an agent to take the best action according to the
current state to maximize its long-term gains. The recent
success of RL [36, 37, 38] shows that RL agent can learn
from the interaction with a complex and dynamic envi-
ronment. The interaction between the agent’s action and
state through the environment is denoted by a sequence of
(state, action, reward, new state). At each time step t, the
agent observes the current state st and chooses the action
at accordingly. Its action interacts with the environment
and transforms the system into a new state st+1. By trans-
forming to a new state, the system might be more close
to the goal, which means the action produces a reward,
denoted by rt. The reward of action can be negative. By
obtaining and analyzing a series of traces (st, at, rt, st+1),
a RL agent can learn the best action when facing an any
state to maximize long-term gains, i.e., the cumulative
discounted reward R =

∑T
t=1 γ

t−1rt, where γ is a factor
discounting future reward and T is the total number of
state transitions.

In the traditional value-based RL algorithm, the agent
maintains a Q(st, at) value table, which stores an estima-
tion of the expected cumulative reward achieved by per-
forming the action at at the state st. Assuming the table
has been known, at each state st, the agent searches the
Q value table and finds the best action at = max

a
Q(st, a).

When the state space is continuous or large, it is im-
practical to store all the information by using Q value ta-
ble alone, and deep neural network (DNN) can be used as
an approximation for the Q value table, which is referred
to as Deep Reinforcement Learning (DRL). DRL trains a
deep neural network φ to predict Q values by calculating
the function Q(st, a;φ), and φ should be able to minimize
the MSE loss of prediction l(φ). Mathematically, the MSE
loss of a network φ is defined as follows.

l(φ) = (rt + γmax
a

Q(st+1, a;φ)−Q(st, at;φ))2 (2)

In this work, we exploit deep Q-network (DQN) [39]
to determine the optimal aggregation number mt in each
round of a federated training task. When applying the
DQN technique to our problem, we have to define the
state, action and reward properly and get a series of (st, at,
rt, st+1) for the training of φ for our problem. In the fol-
lowing subsections, we explain how we define state, action
and reward to solve the problem.

4.1.2. State

“State” should be able to describe the state of a fed-
erated learning system clearly. Especially it must include
all factors that have an influence on the decision of the
optimal aggregation numbers. The experiments in Section
3 reveal two factors: non-IID ratio, training progress per-
centage (can be reflected by the accuracy of current global
model). Besides the above two factors, we conjecture that
capability heterogeneity of devices is also an important
factor. Devices may have widely varied capability of com-
putation and communication, which makes the time to
receive a device model from different devices vary a lot.
The distribution of the time may affect the expected time
taken to wait for one more device model.

Therefore, a state st can be represented by a vector
[χt, P t, dt]. χt is the accuracy of current global model be-
fore training in this round, which characterizes the train-
ing progress percentage. P t characterizes non-IID data
distribution. dt characterizes capability heterogeneity of
devices.

P t is a vector and each element in the vector P (de-
noted by P ti) is defined as the standard deviation of the
i−th element in vector pk(k ∈ Ct). The i−th element in
vector pk (denoted by pi,k) is the proportion of data sam-
ples of the i−th label to all data samples of this device.
Mathematically, we define pi,k =

Ni,k
Nk

, where Nk is the
number of data samples on the device k and Ni,k is the
number of data samples with the i−th label on the device
k. Please note

∑
i pi,k = 1 holds for any k.

Here, we assume that the server can learn pi,k from
devices. It is not necessary for devices to report their data
samples directly, and we think pi,k does not expose the
privacy of devices. If a device is very sensitive to privacy,
it can add a certain amount of noise when reporting its
pi,k.

dt is defined as the standard deviation of single-round
training time of devices selected in the round t. The single-
round training time of a particular device can be esti-
mated from its communication latency of a device model
between the device and the server and its computation
time taken to train a device model using all its data sam-
ples. The communication latency is impacted by the size
of the model and the available bandwidth, while the com-
putation time is impacted by the number of data samples,
the model, and CPU or GPU frequency. An estimation
of communication latency and computation time has been
proposed in [40].

4.1.3. Action

The action of an agent in this problem is to select a par-
ticular aggregation number mt. In each round t, a DQN
agent calculates Q(st, a;φ) for each action a (i.e., a par-
ticular aggregation number) in the current state st using
the forward propagation calculation in neural network of
agent. Then the agent selects the action with the great-
est expected reward, i.e., max

a
Q(st, a;φ). For example,

7

assume there are N clients in total and the server selects
a subset Ct of clients to participant in each round, the
RL agent will output the values of Q(st, a;φ) for all |Ct|
actions, i.e., aggregation number from 1 to |Ct|.

This naive design binds the neural network structure
with the number of selected participants in a round and
it is not flexible when the number of selected participants
changes. To make the agent more flexible, our RL agent
will always output 10 values and each value is the Q value
of an aggregation percentage instead of an aggregation
number. In this way, our RL agent can still work when
the number of participants changes.

4.1.4. Reward

We always prefer to see a more accurate global model
and shorter single-round training time. In DRL, the def-
inition of reward function should be able to reflect the
preference for a state. Therefore, there should be two fac-
tors in the reward function, i.e., accuracy of current global
model in the new state, and the time consumption to con-
duct this round of training. We define the reward value
from taking action at in state st as follows:

rt = βχ
t+1−χ∗ − τ t (3)

where χt+1 is the accuracy of the global model after train-
ing in this round, χ∗ is the target model accuracy that the
learning task expects to reach, β is a base number of the ex-
ponential item which amplifies the reward for higher model
accuracy, τ t is the normalized time cost in this round.

In Equation 3, βχ
t+1−χ∗ is to reflect the preference for

global model accuracy and we should have β > 1. It is
because the expected increment of model accuracy from
a single round generally decreases as the model accuracy
becomes higher, i.e., it is more difficult to improve the ac-
curacy of the global model in later rounds. Therefore, the
reward for the same increment of model accuracy should
be larger as χt increases.

τ t is to reflect the preference for a smaller single-round
training time. Particularly, we define τ t = Tt

B , in which
Tt is the training time of round t, and B is set to be
the training time of the first device model received by the
server in the first round. We can assume that B is fixed in
all rounds for a particular training task. By normalizing
Tt by B, we try to avoid putting too much more weight on
single-round training time than model accuracy, especially
in complex training tasks that are expected to have a very
large τ t.

Through the reward function, the reinforcement learn-
ing agent evaluates the performance of the current aggre-
gation number, including the improvement of the model
accuracy and the time cost of the current aggregation num-
ber. Thus the RL agent can learn and predict the perfor-
mance reward of each aggregation number. In other words,
the RL agent implicitly learns the marginal performance
increase brought by one more client model and determines
whether to wait for the next model.

4.1.5. Training the waiting strategy

We use double deep Q-learning network (DDQN) [41]
to train the waiting strategy. Training a DQN directly
might be unstable since it evaluates the estimationQ(st, at;φ)
and compares it with rt + γmax

a
Q(st+1, a;φ) instead of

the real optimal Q value when computing the loss. Thus,
the comparison benchmark varies with φ, which causes
the learning process unstable and slow. DDQN uses two
DQNs. One DQN φ is updated and used for decision in
a single time step. The other DQN φ

′
is used to evaluate

Q(st, at;φ) and it is updated every M rounds, which re-
duces jitter during the Q evaluation and learning process.

To train the DRL agent, the server first selects clients
randomly and initializes the federated learning model to
initialize the state. The DQN φ takes the state and gen-
erates an action to decide aggregation number, which has
the greatest Q value estimation. In each round, the pair of
(st, at, rt, st+1) is collected. After several rounds, the DRL
agent has sampled a few action-state pairs, with which the
agent can learn to minimize Equation 2 as:

lt(φt) = (Yt −Q(st, at;φt))
2 (4)

where Yt is the target of comparison in round t and

Yt = rt + γQ(st+1, arg max
a

Q(st+1, a;φ);φ
′
)

The φ is updated to minimize the loss by gradient de-
scent as follows.

φt+1 = φt + η̂(Yt −Q(st, at;φt))5φt Q(st, at;φt)

where η̂ is the learning rate of the DRL agent.
The RL agent is trained for several episodes before ap-

plying to a new training task. In this paper, we use a two-
layer MLP [42] network as the model for the DL agent and
the DRL agent for each task is trained for 20 episodes. The
convergence curve of the RL model is shown in Figure 4.
Please note that an episode includes many rounds, and
the RL agent learns the reward of an aggregation number
every round. Figure 4 shows the value of loss function
(Equation 2) of the RL model in each round. Experiment
results suggest that the MLP network can converge and
the RL agent can learn the reward of a aggregation num-
ber effectively. The trained RL agent will be applied to
predict the aggregation number in experiments in Section
5 later.

4.2. Aggregation strategy: aggregating fresh and stale mod-
els

In federated learning, the server keeps receiving client
models from devices, and it has to aggregate these local
models properly to derive a global model. Currently, there
are two kinds of aggregation methods. One is average
method [9], in which the global model is a result of taking
average on all received models. Mathematically,

8

0 500 1000 1500 2000 2500
Steps

0

2000

4000

6000

8000

Lo
ss
 o
f R

L
m
od

el

(a) DRL training on CIFAR-10

0 200 400 600 800 1000 1200 1400
Steps

0

500

1000

1500

2000

Lo
ss
 o
f R

L
m
od

el

(b) DRL training on MINIST

Figure 4: Training the DRL agent

Aggregation in average manner:

Aavg(S) : wt =
∑
k∈S

|Dk|
|D̄|

wkt

where S represents the set of device models to be aggre-
gated and D̄ is the set of data samples in S totally. Ag-
gregation in average manner helps mitigate the impact of
outlier device models that deviate from the majority and
it considers the contribution of each model equally.

The other method is a kind of weighted method [11].
This method aggregates local models one by one. Once
a local model is received, the server combines the current
global model with the local model in a weighted manner.
Mathematically,

Aggregation in weighted manner:

Aweight(w,α) : wt = (1− α)wt−1 + αw

where w represents the model newly received and α is a
weighting factor between the new device model and the
current global model derived from device models received
before. In fact, the above equation is an exponentially
weighted moving average algorithm, which can be expanded
as follows.

wt = α(w +

t−1∑
k=0

(1− α)t−kwk) (5)

The expanded equation clearly shows that the method
weights later device models more than earlier device mod-
els. This design is based on an assumption that later mod-
els are likely to be more accurate than earlier device mod-
els. This assumption holds when later models are derived
from more accurate global models (later global models),
but it does not hold if the later model is derived from an
earlier global model and it arrives later just because the
device is too slow. If α is too large, the global model might
be very sensitive to new models and it is likely that new
models from slow devices drag back the training progress.

4.2.1. Design of our aggregation strategy

In this work, the device models received by the server
in a round can be fresh or stale. Fresh models are based on
the latest global model and are likely to be more accurate,
while stale models are based on earlier global models and
they are derived from data samples of slow devices. Obvi-
ously, fresh device models and stale device models should
not be treated equally.

Therefore, we divide the received models into two sets:
the set of fresh models St and stale models Ŝt. Within one
set, we use the average method to mitigate the impact of
abnormal models that deviate from the majority.

w′t = Aavg(St) (6)

w′′t = Aavg(Ŝt) (7)

where w′t represents the aggregation model of fresh models
and w′′t represents the aggregation model of stale models.

Then we use the weighted method to combine w′t and
w′′t, wherein w′t represents fresh models that tend to be
more accurate and w′′t represents stale models that might
be less accurate but have valuable information about data
samples in slow devices.

wt = (1− αt)w′t + αtw
′′
t (8)

The key issue here is how to set αt properly. Intuitively,
when the stale models are less stale (smaller staleness) or
the stale models represent a lot of data samples, αt should
be larger. We have

αt =
|D′′t |

|D′t||+ |D
′′
t |
eτt (9)

where τt is the average staleness in Ŝt, |D
′

t| is the the set
of data samples in St and |D′′t | is the set of data samples
in Ŝt.

Please note that α is dynamic to be adaptive to the
received models in a single round, i.e., αt is different for
different t and it is not a fixed value. In the next sub-
section, we conduct experiments to illustrate the necessity
and benefit of a dynamic weighting factor.

9

4.2.2. Necessity for the dynamic αt
We conduct an experiment to compare the results of a

changing αt (according to Equation 9) and two fixed set-
ting (α = 0.3 in all rounds and α = 0.7 in all rounds). We
also compare our results with the AD-SGD algorithm pro-
posed by Li et.al [32] since our method and AD-SGD both
attempt to mitigate the negative impact of stale models
in utilizing them. AD-SGD algorithm tries to aggregate
normal and stale models and uses Hessian approximation
matrix to mitigate the negative impact of stale models.
This algorithm requires clients to transmit model param-
eters and gradient parameters to the server in each round
for Hessian approximation computation, while our method
only requires model parameters and has a lower commu-
nication overhead.

In the experiment, we use TensorFlow to train a two-
layer CNN model on the MINIST dataset. The dataset
contains a training set with 60,000 data samples, and a
test set of 10,000 data samples. There are 100 devices in
total and each device is simulated by an individual thread.
The CNN model is trained round by round until it reaches
an accuracy of 97% in the test set. In each round t, the
server randomly selects 10 clients to participate, i.e., |Ct|
= 10. To focus on the impact of aggregation strategy, we
fix the aggregation number as half of the participants in
each round in this experiment, i.e. mt = 5 in all rounds.

We conjecture that the non-IID ratio may have an in-
fluence on the comparison between different aggregation
strategies. When the non-IID ratio is larger, each device
is likely to be unique and its data samples must be in-
cluded in the global model, therefore stale models might
be more valuable. Therefore we conduct experiments for
two cases: IID and non-IID. The setting of non-IID is the
same as the experiment in Section 3.

We plot the model accuracy in every round during the
training in Figure 5. From it, we can see that our dy-
namic αt setting can bring faster convergence rate than
the fixed settings in both cases. It demonstrates that the
dynamic αt strikes a balance between the values of stale
models and the negative effect of model staleness. Our
method achieves a convergence speed similar to the AD-
SGD algorithm but the required data transmission vol-
ume between clients and the server in our method is only
half of that in AS-SGD. In mobile edge scenarios, band-
width resources are scarce and data transmission is time-
consuming. Transmitting less data means saving more
transmission time and thus reducing the total training
time.

4.3. The learning system

Based on our waiting strategy and aggregation strat-
egy, we design a learning system which is shown in Figure
6.

Our learning system contains three blocks: interfaces
to devices, RL agent and partial model aggregator. The
interface block consists three modules that are responsible

0 20 40 60 80 100 120
Rounds

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu
ra
cy

adaptive
α = 0.3
α = 0.7
AD-SGD

(a) IID

0 25 50 75 100 125 150
Rounds

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu
ra
cy

adaptive
α = 0.3
α = 0.7
AD-SGD

(b) non-IID

Figure 5: Model accuracy in every round during the training

for three tasks. The information collector stores the in-
formation about devices, such as the distribution of data
samples among devices and the computation and commu-
nication capability of each device. The client selector and
global model distributor module is responsible for select-
ing participants from all available clients in each round
and distribute current global model to the selected partic-
ipants. The client model receiver module is responsible for
collecting client models from participants. The RL agent
block determines the aggregation number in each round
using our waiting strategy. The partial model aggregator
aggregates fresh and stale client models to obtain a global
model in each round.

With our learning system, in each round, the client se-
lector randomly selects a subset of clients to participate
and the selector informs the reinforcement learning agent
of the selected clients in step 1. The reinforcement learn-
ing agent fetches information about the data distribution,
capabilities of the selected clients and training progress
from the information collector in step 2. In step 3, the
RL agent decides the aggregation number and informs the
partial model aggregator.

Meanwhile, the global model distributor sends the cur-
rent global model to the selected clients, which is listed as

10

…
partial model aggregator
（aggregation strategy）

server

④

⑤
①

③

②

⑥

⑦

⑧

⑤

RL agent to determine
aggregation number
(waiting strategy)

④

client selector and global
model distributor

client model receiver

information collector
(about device, data

distribution …)

client devices

interfaces to devices

Figure 6: System overview

step 4 but in fact can start once step 1 is finished. The
client model receiver keeps receiving the models trained
locally by clients and forward them to the partial aggre-
gator, which is shown as the step 5 and step 6. After the
number of client models received by the partial model ag-
gregator reaches the aggregation number determined by
the RL agent, the aggregator aggregates both fresh and
stale models to obtain the global model of this round in
step 7. The global model is evaluated on the validation set
and the accuracy is measured. The training time of this
round and the accuracy of the global model is sent to the
RL agent to calculate the reward for the learning of our
waiting strategy in step 8. This completes a single round.
The system runs round by round until the training task is
completed.

5. Experiment

We implement FedPA using TensorFlow and conduct
several simulation experiments to evaluate the performance
of FedPA.

We use a two-layer MLP [42] network with 64 hidden
states as the model for the DL agent in FedPA. We choose
this simple MLP network because it has fewer parameters
to be learned and converges more easily than models with
a complex neural network. Although a complex model
may achieve better performance, its design needs careful
considerations and it is not the focus of this work. In our
FedPA, the DRL agent is trained for 20 episodes and the
MLP network has converged. Then it is applied in FedPA
and we start to collect statistics of the experiments for our
performance evaluation.

The simulation experiments are run on a server. In
our experiments, we simulate 100 user devices. Each user
device is simulated by a thread and it occupies a CPU
exclusively. In each round, the server randomly selects
10 clients to participate, i.e., |Ct| = 10, which means 10
threads are wakened up to train device models in each
round.

We compare our FedPA with three algorithms, i.e., Fe-
dAvg, FedAsync [11] and FLANP [31].

• FedAvg. In each round, the server waits for device
models until all device models are received or a pre-
set timer expires. It averages them to get an updated
global model. In order to make sure the algorithms
are comparable, FedAvg algorithm is also set to ran-
domly select 10 clients to participate in each round.

• FedAsync. The server periodically sends the cur-
rent global model to a client randomly. The server
aggregates device models using a weighted average
method every time it receives a model.

• FLANP. FLANP sorts client nodes from fast to slow
according to their completion time. It uses first sev-
eral fast nodes for warm-up training, and gradually
involves more participants to train local models in
the training process until the model reaches a sat-
isfactory accuracy. It always chooses client nodes
from fast to slow in each round and waits for all se-
lected clients to return results before entering the
next round. Thus, FLANP has no stale models. In
the FLANP algorithm, when to involve more num-
ber of participants depends on the value of loss func-
tion of the current model and a threshold hyper-
parameter. In practice, the threshold hyper-parameter
is difficult to determine or requires prior knowledge
to determine. To ensure fairness, we tune its thresh-
old hyper-parameter to ensure that the summations
of the number of selected participants in each round
of these two algorithms are close, which means two
algorithms consume approximately equal computa-
tional resources. We compare the performance of
FLANP with ours under different non-IID ratios.

• FedPA-fixed. We also simulate FedPA with a fixed
aggregation number, in which there is no reinforce-
ment learning agent to learn dynamic aggregation
numbers. We refer it as FedPA-fixed.

The training tasks are based on two data sets: CIFAR-
10 and MNIST. We run each algorithm to train a CNN
model using each data set and compare the accuracy of
the models achieved by these algorithms. We choose the
hyper-parameter with the best performance for FedAvg,
and the hyper-parameter is different on different data sets.

CIFAR-10: CIFAR-10 dataset is used widely in Fed-
erated learning studies. It is an object classification dataset,
which consists of 50,000 training images and 10,000 test-
ing images with 10 object classes. The training task is to
train a CNN model with two 5 × 5 convolution layers us-
ing this dataset. Both layers have 64 channels, and each
convolution layer is followed by a pooling layer and a local
response normalization layer, and the batch size is set to
be 32.

MINIST: MINIST is a classic handwriting image clas-
sification data set, which consists of 60,000 training images
and 10,000 testing images with 10 classes (digit 0 to 9).
The training task on this dataset is to train a CNN model

11

with two 5 × 5 convolution layers. The first layer has 32
channels and the second layer has 64 channels. Each con-
volution layer is followed by a pooling layer, and the batch
size is set to be 50.

The target accuracy for the CNN training on the MNIST
dataset is 96%, and the target accuracy is 55% for the
CNN training on CIFAR-10. Previous works have shown
that the two-layer CNN model converges when the model
almost reaches the corresponding target accuracy in the
corresponding datasets with FedAvg method.

There are two important factors that affect the perfor-
mance of these algorithms, i.e., the distribution of data
samples among devices (characterized by non-IID ratio)
and the levels of device capability heterogeneity. Our ex-
periments try to evaluate the performance in various situ-
ations.

5.1. Performance comparison under different non-IID ra-
tios

In this subsection, we try to evaluate the performance
when the non-IID ratio changes. We use the same ap-
proach to generate non-IID data samples as introduced in
Section 3. We conduct experiments to explore the per-
formance of various algorithms under three settings, IID,
non-IID with σ = 0.5 and non-IID with σ = 0.8.

We plot the testset accuracy during training in Fig-
ure 7. We plot a horizontal line to emphasize the time
taken by each algorithm to reach the target accuracy. We
can see that time taken by FedPA is shorter than other
algorithms in most cases. Our partial model aggregation
strategy converges in all cases and avoids the disadvantage
of FedAsync.

In the experiment using the CIFAR-10 dataset, when
the data distribution is IID or the non-IID ratio is small
(σ = 0.5), both FedPA and FedAsync outperform FedAvg,
which demonstrates the benefit of discarding the require-
ment of being synchronous, and FLANP outperforms Fe-
dAvg since it prefers to select fastest nodes during train-
ing. The performance of FLANP and FedPA are close
when non-IID ratio is small (σ = 0.5), but the perfor-
mance of FLANP oscillates slightly and has spikes. The
reason for the spikes is as follows. When the distribution
of data samples among participants is non-IID and the
global model overfits easily if the server always prefers a
small number of fast participants. FLANP always prefers
those fast nodes during training, therefore the difference
among participants causes that local trained models have
relatively large deviation from the optimal global model,
and makes the performance of the global model oscillates
when the number of participants changes. When the non-
IID ratio σ reaches 0.8, the convergence rate of FedAsync
significantly slows down and the model cannot achieve the
target accuracy. FLANP oscillates more often and takes
more time to finish the training task. In the experiment
on the MINIST dataset, the FedAsync strategy converges
slowly and cannot achieve the target accuracy in all IID

and non-IID settings. FedPA takes less training time than
FLANP in non-IID settings.

In summary, our experimental results show that our
strategies take less training time than the FedAvg and the
FedAsync method in both IID and non-IID scenarios. Our
strategies also take less training time than the FLANP
algorithm in non-IID scenarios.

5.2. Performance comparison under different levels of de-
vice capability heterogeneity

The time a device takes to train a device model in a
round depends on the computation capability of the de-
vice, and the time for a device to communicate with the
server to retrieve the global model and submit its device
model depends on the bandwidth between the device and
the server. Devices that participate in a training task may
have different computation capabilities and communica-
tion capabilities.

Each device is simulated by a thread running on a CPU
core exclusively. Because all threads are running on the
same type of CPU cores, the running time, i.e., the time
length that the CPU takes to finish a single-round training,
is approximately the same. We let the threads sleep for
a while before uploading device models, and devices with
different capabilities are simulated by setting the ratio of
sleep time to running time to be different for devices. The
ratio is retrieved by sampling points on a truncated nor-
mal distribution. By controlling the deviation parameter
(denoted as h) of the truncated normal distribution, we
can have different levels of device capability heterogeneity.

In this subsection, we try to evaluate the performance
in two kinds of distribution of device capability, i.e., h = 1
and h = 5, which are shown in Figure 8. In the distribution
of h = 1, most devices are powerful and they can complete
their jobs fast, but there are a small number of devices
that are extremely slow. In the distribution of h = 5, the
ratios are widely distributed in an interval without any
long tail, which means the devices have less significant ca-
pability difference compared to h = 1. Both distributions
are normalized, which means two settings have an equal
expected average capability of devices.

Figure 9 shows the testset accuracy during the two
training tasks in two different scenarios, i.e., h = 1 and
h = 5. The time taken by FedPA is shorter than FedAvg
and FedAsync in all cases. The time taken by FedPA is
close to the time taken by FedPA-fixed in three cases. In
the case on CIFAR-10 and h = 1, FedPA clearly outper-
forms FedPA-fixed, which shows that the dynamic aggre-
gation number is especially helpful when devices are more
heterogeneous.

In the two cases on the MINIST dataset, FedAsync
cannot achieve the target accuracies. It only achieves an
accuracy of 67% in the case of h = 1 and achieves an ac-
curacy of 75% when h = 5. We believe it demonstrates
the negative effect of starting the next training round by
only waiting for one client model. As illustrated in Fig-
ure 2 in Section 3, considering only one client model can

12

0 500 1000 1500 2000 2500 3000
time(s)

0.1

0.2

0.3

0.4

0.5

0.6

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA
FLANP

(a) IID

0 1000 2000 3000 4000
time(s)

0.1

0.2

0.3

0.4

0.5

0.6

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA
FLANP

(b) non-IID: σ = 0.5

0 1000 2000 3000 4000 5000 6000 7000
time(s)

0.1

0.2

0.3

0.4

0.5

0.6

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA
FLANP

(c) non-IID: σ = 0.8

0 100 200 300 400 500 600 700
time(s)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA
FLANP

(d) IID

0 200 400 600 800
time(s)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA
FLANP

(e) non-IID: σ = 0.5

0 200 400 600 800 1000 1200 1400 1600
time(s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA
FLANP

(f) non-IID: σ = 0.8

Figure 7: Accuracy during training under different non-IID ratios (top: CIFAR-10, bottom: MINIST)

0 1 2 3 4
ratio of sleep time to running time

0

1

2

3

4

5

6

pr
ob

ab
ilit

y

1e−1
h=1
h=5

Figure 8: density (probability) v.s. ratio of sleep time to running
time

bring large deviation compared with the expected global
model. In our solution, we consider multiple client mod-
els and the deviation quickly decreases before aggregation.
It successfully avoids the problem of FedAsync mentioned
above.

5.3. The output of RL agent under different non-IID ratio

In this subsection, we present the prediction results of
our RL agent in scenarios with different non-IID ratios
to explore how the RL agent adapts to different non-IID
ratios.

We conduct experiments for scenarios with different
non-IID ratios (i.e., IID, non-IID with σ = 0.5 and σ =
0.8) and different distribution of device capability (i.e.,
h = 1 and h = 5). The experiment results are presented
in Table 1 and 2. We can see that the RL agent predicts
a larger aggregation number when the non-IID ratio is

Table 1: The average of predicted aggregation number on CIFAR-10

IID non-IID: σ = 0.5 non-IID: σ = 0.8
h = 1 4.237 5.143 5.304
h = 5 3.851 5.090 5.120

Table 2: The average of predicted aggregation number on MINIST

IID non-IID: σ = 0.5 non-IID: σ = 0.8
h = 1 3.143 3.703 5.229
h = 5 2.837 3.621 4.093

larger and predicts a smaller aggregation number when
the heterogeneity of device capability is larger.

5.4. Privacy and robustness of our RL agent

Privacy protection is an advantage of federated learn-
ing. In our method, the input of RL agent requires the
clients to send the server their data distribution informa-
tion, which does not expose raw data of clients. If the
clients are extremely sensitive to privacy, they can add a
certain amount of noise to their data distribution informa-
tion, as people do in differential privacy. In this subsection,
we explore the robustness of our RL agent when noise is
added to the percentage of each individual class label.

We add Laplace noise to the percentages and the prob-
ability density function of noise is as follow.

f(x) =
1

2λ
e
−|x−µ|

λ (10)

where x is the percentage of each individual class label,
µ is the average of the noise and we set it to 0 in this

13

0 500 1000 1500 2000 2500 3000 3500
time(s)

0.1

0.2

0.3

0.4

0.5

0.6
AC

C

FedAvg
FedAsync
FedPA-fixed
FedPA

(a) h = 1

0 200 400 600 800
time(s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA

400 600 800

0.94

0.96

(b) h = 1

0 500 1000 1500 2000 2500 3000 3500 4000
time(s)

0.1

0.2

0.3

0.4

0.5

0.6

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA

(c) h = 5

0 100 200 300 400 500 600 700 800
time(s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

FedAvg
FedAsync
FedPA-fixed
FedPA

(d) h = 5

Figure 9: Accuracy v.s. time on different level of heterogeneity (left: CIFAR-10, right: MINIST)

Table 3: Training performance with different scales of noise on
CIFAR-10

scale
avg.

aggregation number
num. of
iterations

duration

0 5.143 180 2668.33
1 5.013 155 2641.95
3 5.198 177 2707.83
5 4.989 190 3213.52

experiment, λ is the scale of the noise. We compare the
average of predicted aggregation number, the number of
iterations and the training duration under different scales
of noise.

Table 3 and 4 show the experimental results on dataset
CIFAR-10 and MINIST. The predicted aggregation num-
ber by RL agent and the number of iterations are stable
on dataset CIFAR-10. These two metrics are also stable
on dataset MINIST when the scale is no more than 1. The
training duration is stable on both datasets when the scale
is less than 5. In summary, our RL agent is robust within
a certain amount of noise.

6. Conclusion

Federated learning is a promising approach to train
models using the large amounts of data and the AI com-

Table 4: Training performance with different scales of noise on MIN-
IST

scale
avg.

aggregation number
num. of
iterations

duration

0 3.703 77 370.49
1 4.896 68 382.55
3 5.329 71 408.19
5 4.867 76 483.30

ponents owned by end devices. However, end devices are
heterogenous and unstable. They are not dedicated to
train models and their capability and availability cannot
be guaranteed during training. Federated Averaging, the
most widely accepted framework, suffers seriously from
participant devices with weak computation and/or com-
munication capability.

In this paper, we present the concept of partial model
aggregation and conduct experiments to show that the first
several arrived device models in each round have been able
to derive a relatively good aggregated model with only
small precision loss. The deviation of partial aggregation
model is large at the beginning, but decreases quickly with
more client models collected. The experiments also sug-
gest that the deviation of partial aggregation model for
a specific aggregation number is influenced by the non-
IID ratio and training progress percentage. We further

14

propose two strategies, waiting strategy and aggregation
strategy, to solve the two key issues in our partial aggre-
gation framework. Particularly, our waiting strategy de-
termines the aggregation number for each round via re-
inforcement learning. It adapts to various scenarios very
well and makes sure that the server only waits for the de-
vice models with significant contribution. Our aggregation
strategy classifies fresh models and stale models, and gives
appropriate weights to them. Stale models have valuable
information to improve the precision of the global model in
the round, but they are trained from expired global mod-
els which means they can have a negative influence on the
convergence of the training process. Our weighting fac-
tor takes model staleness and the number of data samples
used by stale models into consideration. The experiments
demonstrate that FedPA performs better than FedAvg and
other three algorithms named FedAsync, FLANP and AD-
SGD, especially when the devices are more heterogeneous
in terms of the data and capability owned by them. The
experiments also suggest that FedPA is robust when a cer-
tain amount of noise is added into the input for privacy
concerns.

Acknowledgement

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 62072269
and in part by the Natural Science Foundation of China
under Grant 61772139.

References

[1] J. Kooistra, Newzoo’s 2018 global mobile market report: In-
sights into the world’s 3 billion smartphone users, Newzoo,
September 11 (2018).

[2] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, C. Miao, Federated learning in mobile edge
networks: A comprehensive survey, IEEE Communications Sur-
veys & Tutorials (2020).

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with
convolutions, in: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 1–9.

[4] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
L. Fei-Fei, Large-scale video classification with convolutional
neural networks, in: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2014, pp. 1725–
1732.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups, IEEE
Signal processing magazine 29 (6) (2012) 82–97.

[6] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays,
S. Augenstein, H. Eichner, C. Kiddon, D. Ramage, Feder-
ated learning for mobile keyboard prediction, arXiv preprint
arXiv:1811.03604 (2018).

[7] R. Gu, S. Yang, F. Wu, Distributed machine learning on mobile
devices: A survey, arXiv preprint arXiv:1909.08329 (2019).

[8] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, X. Chen,
Convergence of edge computing and deep learning: A com-
prehensive survey, IEEE Communications Surveys & Tutorials
22 (2) (2020) 869–904.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Ar-
cas, Communication-efficient learning of deep networks from de-
centralized data, in: Artificial Intelligence and Statistics, 2017,
pp. 1273–1282.

[10] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Inger-
man, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B.
McMahan, et al., Towards federated learning at scale: System
design, arXiv preprint arXiv:1902.01046 (2019).

[11] C. Xie, S. Koyejo, I. Gupta, Asynchronous federated optimiza-
tion, arXiv preprint arXiv:1903.03934 (2019).

[12] W. Wu, L. He, W. Lin, R. Mao, C. Maple, S. A. Jarvis, Safa: a
semi-asynchronous protocol for fast federated learning with low
overhead, IEEE Transactions on Computers (2020).

[13] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cum-
mings, et al., Advances and open problems in federated learning,
arXiv preprint arXiv:1912.04977 (2019).

[14] M. Duan, D. Liu, X. Chen, Y. Tan, J. Ren, L. Qiao, L. Liang,
Astraea: Self-balancing federated learning for improving clas-
sification accuracy of mobile deep learning applications, in:
2019 IEEE 37th International Conference on Computer Design
(ICCD), IEEE, 2019, pp. 246–254.

[15] H. Eichner, T. Koren, H. B. McMahan, N. Srebro, K. Tal-
war, Semi-cyclic stochastic gradient descent, arXiv preprint
arXiv:1904.10120 (2019).

[16] K. Hsieh, A. Phanishayee, O. Mutlu, P. B. Gibbons, The non-iid
data quagmire of decentralized machine learning, arXiv preprint
arXiv:1910.00189 (2019).

[17] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie,
R. Pedarsani, Fedpaq: A communication-efficient federated
learning method with periodic averaging and quantization, in:
International Conference on Artificial Intelligence and Statis-
tics, 2020, pp. 2021–2031.

[18] J. Wu, W. Huang, J. Huang, T. Zhang, Error compensated
quantized sgd and its applications to large-scale distributed op-
timization, arXiv preprint arXiv:1806.08054 (2018).

[19] Y. Lin, S. Han, H. Mao, Y. Wang, W. J. Dally, Deep gradi-
ent compression: Reducing the communication bandwidth for
distributed training, arXiv preprint arXiv:1712.01887 (2017).

[20] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang,
K. Gopalakrishnan, Adacomp: Adaptive residual gradient com-
pression for data-parallel distributed training, arXiv preprint
arXiv:1712.02679 (2017).

[21] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu, 1-bit stochastic gra-
dient descent and its application to data-parallel distributed
training of speech dnns, in: Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

[22] Y. Chen, X. Sun, Y. Jin, Communication-efficient federated
deep learning with layerwise asynchronous model update and
temporally weighted aggregation, IEEE Transactions on Neural
Networks and Learning Systems (2019).

[23] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya,
T. He, K. Chan, When edge meets learning: Adaptive control
for resource-constrained distributed machine learning, in: IEEE
INFOCOM 2018-IEEE Conference on Computer Communica-
tions, IEEE, 2018, pp. 63–71.

[24] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R.
Ganger, P. B. Gibbons, O. Mutlu, Gaia: Geo-distributed ma-
chine learning approaching {LAN} speeds, in: 14th {USENIX}
Symposium on Networked Systems Design and Implementation
({NSDI} 17), 2017, pp. 629–647.

[25] L. G. Valiant, A bridging model for parallel computation, Com-
munications of the ACM 33 (8) (1990) 103–111.

[26] B. Recht, C. Re, S. Wright, F. Niu, Hogwild: A lock-free ap-
proach to parallelizing stochastic gradient descent, in: Advances
in neural information processing systems, 2011, pp. 693–701.

[27] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, E. P. Xing, More effective distributed ml
via a stale synchronous parallel parameter server, in: Advances
in neural information processing systems, 2013, pp. 1223–1231.

[28] X. Lian, Y. Huang, Y. Li, J. Liu, Asynchronous parallel stochas-

15

tic gradient for nonconvex optimization, in: Advances in Neural
Information Processing Systems, 2015, pp. 2737–2745.

[29] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, E. P. Xing,
High-performance distributed ml at scale through parameter
server consistency models, in: Proceedings of the 29th AAAI
Conference on Artificial Intelligence, 2015, pp. 79–87.

[30] T. Nishio, R. Yonetani, Client selection for federated learning
with heterogeneous resources in mobile edge, in: ICC 2019-
2019 IEEE International Conference on Communications (ICC),
IEEE, 2019, pp. 1–7.

[31] A. Reisizadeh, I. Tziotis, H. Hassani, A. Mokhtari,
R. Pedarsani, Straggler-resilient federated learning: Leveraging
the interplay between statistical accuracy and system hetero-
geneity, arXiv preprint arXiv:2012.14453 (2020).

[32] X. Li, Z. Qu, B. Tang, Z. Lu, Stragglers are not disaster: A hy-
brid federated learning algorithm with delayed gradients, arXiv
preprint arXiv:2102.06329 (2021).

[33] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classifica-
tion with deep convolutional neural networks, in: Advances in
neural information processing systems, 2012, pp. 1097–1105.

[34] H. Wang, Z. Kaplan, D. Niu, B. Li, Optimizing federated learn-
ing on non-iid data with reinforcement learning, in: IEEE
INFOCOM 2020-IEEE Conference on Computer Communica-
tions, IEEE, 2020, pp. 1698–1707.

[35] R. S. Sutton, A. G. Barto, Reinforcement learning: An intro-
duction, MIT press, 2018.

[36] H. Mao, M. Alizadeh, I. Menache, S. Kandula, Resource man-
agement with deep reinforcement learning, in: Proceedings of
the 15th ACM Workshop on Hot Topics in Networks, 2016, pp.
50–56.

[37] H. Wang, D. Niu, B. Li, Distributed machine learning with a
serverless architecture, in: IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications, IEEE, 2019, pp. 1288–
1296.

[38] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, J. Dean, De-
vice placement optimization with reinforcement learning, arXiv
preprint arXiv:1706.04972 (2017).

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, M. Riedmiller, Playing atari with deep reinforce-
ment learning, arXiv preprint arXiv:1312.5602 (2013).

[40] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, C. S. Hong, Fed-
erated learning over wireless networks: Optimization model de-
sign and analysis, in: IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, IEEE, 2019, pp. 1387–1395.

[41] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning
with double q-learning, arXiv preprint arXiv:1509.06461 (2015).

[42] H. Bourlard, Y. Kamp, Auto-association by multilayer percep-
trons and singular value decomposition, Biological cybernetics
59 (4-5) (1988) 291–294.

16

