
Discovering Obscure Looking Glass Sites on the Web
to Facilitate Internet Measurement Research
Shuying Zhuang
Tsinghua University

Jessie Hui Wang∗
Tsinghua University

Jilong Wang
Tsinghua University

Zujiang Pan
Tencent Technology

Tianhao Wu, Fenghua Li
Tsinghua University

Zhiyong Zhang
CETC

ABSTRACT
Despite researchers have noticed that Looking Glass (LG)
vantage points (VPs) are valuable for Internet measurement
researches, they can only exploit VPs from well-known LG
sites published on several LG portal pages. There should
be a lot of LG sites that are not published in these portal
pages, namely obscure LG sites, which are not easy to be
found and exploited by researchers. In this paper, we design
an efficient focused crawler to discover as many LG sites as
possible which can avoid unnecessary resource consump-
tion on analyzing irrelevant pages. Our designed focused
crawler takes a similarity-guided search that exploits the
well-developed search engines and comprehensively mines
the common features shared by known LG sites to discover
more LG pages. Moreover, the focused crawler takes a two-
step PU learning classifier based on carefully selected LG
features to efficiently discard irrelevant URLs, thus avoid-
ing a lot of unnecessary resource consumption. As far as
we know, we are the first to develop a method to discover
obscure LG sites on the web. Experimental results show the
effectiveness of our focused crawler. To facilitate practical ap-
plications, we further develop an automation tool, which can
successfully retrieve 910 obscure automatable LG VPs from
relevant pages obtained through our focused crawler. The
910 LG VPs significantly increase the geographic and net-
work coverage of available VPs and we show their potential
values in improving the completeness of AS-level Internet
topology by a simple case study. Our method and the final
VP list (which will be publicly accessible) are beneficial to
the measurement community.

CCS CONCEPTS
• Networks→ Network measurement.

KEYWORDS
Looking Glass, Internet Measurement, Focused Crawler

∗Jessie Hui Wang is the corresponding author, jessiewang@tsinghua.edu.cn.

1 INTRODUCTION
Measurement vantage points (VPs) are critical for Internet
measurement researches. Taking the inter-domain topology
measurement as an example, the large-scale and distributed
nature of the Internet implies the completeness of collected
topologies heavily depends on the number and distribution of
VPs. For years, measurement platforms (such as Archipelago,
RouteViews) have spent a lot of efforts in deploying VPs. For
example, the RouteViews platform has taken about 20 years
in seeking the cooperation of organizations that are willing
to share their routing information. However, the number
and the geographic and network coverage of its VPs are
still limited [21, 31, 32, 35, 51]. It would be very valuable if
researchers can measure the Internet from more VPs.
Many Internet service providers actively deploy Looking

Glass (LG) VPs inside their networks and allow users to run
some popular measurement commands on these VPs, such as
traceroute or bgp [29]. They deploy LGs to provide windows
to observe their networks to attract customers to use their
network services and help troubleshoot Internet connectivity
and performance issues. These LG VPs offer researchers
opportunities to observe the Internet from various locations,
such as core routers, border routers, and IXPs’ route servers.

Researchers usually find usable LG sites from several well-
known LG portal pages, i.e., PeeringDB [8], Traceroute.org
[14], BGP4.as [2], and BGPLookingglass.com [3]. We name
the LG sites published on these several portal pages as well-
known LG sites, and VPs fromwell-known LG sites have been
used in many measurement researches [37, 46, 47].
However, many LG sites that are not published on these

well-known LG portal pages cannot be found and exploited
easily. We refer to these LG sites as obscure LG sites. It would
be valuable if researchers can exploit these obscure LG sites.
In this paper, we design an efficient focused crawler to dis-
cover obscure LG sites on the web. To help researchers to
use them efficiently, we further develop a tool to automate
the use of their VPs and retrieve a list of automatable LG
VPs. As far as we know, we are the first to develop a method
to discover obscure LG sites on the web.



Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

With the rapid growth of network information, there are
near two billion active websites on the web. Instead of crawl-
ing every page and judge whether it provides a looking glass
service to discover LG sites, the basic idea of our efficient
focused crawler is to only crawl pages that are likely to be LG
pages and judge whether they are LG pages. There are two
key procedures, i.e. crawling procedure and classification
procedure, that have to be carefully designed with consider-
ation of the characteristics of LG sites, to achieve the goal
of discovering as many LG sites as possible while avoiding
unnecessary resource consumption on irrelevant pages.

Previous focused crawlers for various topics often assume
that pages on the same topic are usually connected, which
does not hold for LG pages. There can be many LG pages
that are not connected to any other LG pages. As a result, the
widely used hyperlink-guided crawling procedure is not suf-
ficient for crawling pages that are likely to be LG pages. We
need to design a new search method based on the characteris-
tics of LG pages to efficiently discover more LG pages. In this
work, we develop a similarity-guided search that exploits
well-developed search engines to find pages that are similar
to known LG pages. Search engines have indexed a complete
view of the web and designed professional search algorithms.
On this basis, we carefully analyze all well-known LG pages
and extract their common features as search terms to get
high-quality search results.

To efficiently and correctly judge URLs that are obtained
from the crawling procedure, we design a two-step PU learn-
ing classifier based on carefully selected LG features. We
notice that URLs, page titles, and specific elements in html
files are all valuable for distinguishing between LG pages
and other pages. So we first design a pre-filter based on URL
features to filter out a lot of irrelevant URLs, thus avoiding
significant resource consumption in downloading html files
of the irrelevant URLs. Then we design a classifier based on
carefully selected html file features to further classify the
remaining URLs with downloaded html files more accurately.
Moreover, the semi-supervised PU (Positive and Unlabeled)
learning approach can help us deal with the problem of lack-
ing labeled negative samples for training without requiring
time-consuming work to manually label numerous samples.
Experimental results show the focused crawler can effi-

ciently find more LG pages with lower resource overhead.
Specifically, our similarity-guided search can discover rel-
evant pages 24 times more than those discovered from the
widely used hyperlink-based search. Our two-step classifier
would be both accurate and efficient. It can not only effec-
tively reduce the number of URLs to be downloaded by about
85%, but also obtain final classification results with high TPR
(96.10%) and low FPR (4.10%), which means most LG pages
are reserved as relevant ones and most non-LG pages are

filtered out. In total, our focused crawler discovers 50,777
pages that are relevant to LG sites.
Despite the pages that are classified as relevant by the

focused crawler are not guaranteed to be LG pages, the prob-
ability for a relevant page to be an LG page has been much
higher than a random page. Therefore these relevant pages
are useful and researchers can check and use them manually
when they need more VPs. As for researchers who want to
conduct large-scale or periodic measurement tasks, it will be
more useful if they can use the VPs on these LG pages by just
sending requests automatically. We develop a tool to auto-
mate the use of LG VPs and retrieve 910 obscure automatable
VPs from the relevant pages. As a comparison, there are only
1,446 known automatable VPs from all well-known LG sites.
Our work increases the number of automatable LG VPs that
are available to researchers by about 62.9%.
The 910 obscure VPs enable researchers to execute mea-

surement commands from 8 new countries, 160 new cities,
and 262 new ASes where no known VPs (including mea-
surement platforms such as Ark and RIPE) have been found
before. To show their potential values in facilitating Internet
measurement research, we conduct a case study in which
we use obscure LG VPs to improve the completeness of the
AS-level Internet topology. In this case study, we use only
8 obscure automatable VPs that support both commands of
show ip bgp summary and show bgp neighbor ip advertised
(or received) routes. These 8 VPs help us find 1,428 new AS
links and 10 new ASes that are not observed by VPs from
well-known LG sites, RIPE RIS, and RouteViews, which are
almost all public VP sources that can be used to obtain BGP
routes before our work.
The rest of this article is structured as follows. In §2, we

present the detailed design of our focused crawler. Exper-
imental and evaluation results on our designed similarity-
guided search and two-step classifier are presented in §3. We
introduce the practical applications of our work in §4. In §5
and 6, we introduce ethical concerns and the related work
respectively. §7 concludes the paper.

2 LG FOCUSED CRAWLER DESIGN
2.1 Design goals and challenges
There are extremely large amounts of pages on the web. Ob-
viously, due to resource limitations, we cannot crawl every
page and judge whether the page provides a looking glass
service to discover LG pages. The goal of our work is to
discover as many LG pages as possible while avoiding unnec-
essary resource consumption on irrelevant pages. However,
building an LG focused crawler system that can achieve the
goal is challenging for several reasons. First, the poor hyper-
link connections between LG pages require us to design an
effective search method to locate more LG pages. Second,



Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

to judge crawled pages efficiently and correctly, we need
to design a high-performance classifier based on carefully
selected LG features. Moreover, the lack of labeled non-LG
pages (negative samples) further increases the difficulty of
classifier design.

2.2 Overview
Figure 1 shows an overview of our LG focused crawler, which
consists of two key components: a crawling procedure which
searches the Internet for candidate URLs (§2.3) and a clas-
sification procedure which classifies candidate URLs into
relevant or not (§2.4). It starts from a set of well-known LG
sites, which is referred to as LG seed set. Based on these seed
pages, our crawling procedure searches the Internet for URLs
that are likely to be LG URLs, which are denoted as candi-
date URLs. We implement the search in two parallel ways,
one is collecting hyperlinks of seed pages (namely hyperlink-
guided search) and the other is exploiting well-developed
search engines to collect pages similar to seed pages (namely
similarity-guided search). Our similarity-guided search ben-
efits from a comprehensive extraction of common features
shared by known LG pages thus can help locate more effec-
tive candidate URLs.

Figure 1: The LG focused crawler overview.

Obviously, the candidate URLs found by our crawling pro-
cedure are not necessarily LG URLs. We need a classification
procedure to further classify them into relevant and irrel-
evant ones. In this work, a two-step PU learning classifier
including a URL-based pre-filter and a content-based classifier,
is designed to efficiently and accurately classify the can-
didates. Specifically, the pre-filter based on extracted URL
features filters out irrelevant URLs before downloading html
files to save significant resources. As for the remaining URLs,
which are named as pre-filtered URLs, we download their
html files and use the content-based classifier based on care-
fully selected html file features to further classify them more
accurately. Besides, the employed PU learning algorithm can
overcome the challenge of lacking labeled negative samples.

The pages that are confirmed by the content-based classifier
to be LG pages are named as relevant URLs.

Whenever relevant URLs are discovered, they can be used
as known LG pages to start a new round of iteration. The
iterative exploration can help us find more relevant URLs.

2.2.1 LG seed set. We collect a set of known LG pages
from public LG portal pages such as PeeringDB [8], Tracer-
oute.org [14], BGP4.as [2], and BGPLookingglass.com [3].
In total, we have 2,991 known LG URLs to serve as the
seeds to start our search process. These pages are down-
loaded using the python library Requests [9]. Some URLs
respond with HTTP error messages and 1,736 html files are
downloaded successfully. Some files are found to have ex-
pired and do not provide looking glass services now, e.g.,
https://www.gtanet.ca/ looking-glass/ . After a manual check,
we obtain 1085 valid html files that are providing looking
glass services now.

2.3 Crawling procedure design
Many previous works have noticed that web page authors
usually intend to create links to pages on the topics re-
lated to their own pages [25]. Therefore, they usually use
hyperlink-guided search. In this paper, we also implement
the hyperlink-guided search by directly extracting hyper-
links from known LG pages as candidate URLs. However, it
is not sufficient because there can be many LG pages that
are not connected to any other LG pages, and they cannot
be found by this method.

To deal with the challenge, we develop a similarity-guided
search method. LG pages are all deployed to provide LG
services, and it is natural that they are likely to be similar in
some aspects. To locate more effective candidate URLs, the
basic idea of our similarity-guided search is to find pages that
are similar to known LG pages. Intuitively, we can define
metrics to evaluate the similarity between any two pages
and then crawl the Internet and evaluate every page found
by the crawler. But we all know that crawling the Internet
is not easy and it is what we want to avoid. In this work,
we exploit well-developed search engines (such as Google
and Bing) to accomplish the crawling. These search engines
have deployed excellent infrastructure to regularly crawl
the Internet and answer queries from users. We analyze
all known LG pages to find the common features shared
by them. These shared features are transformed into search
terms, and these search terms are entered into search engines
to get candidate LG URLs. In this way, we do not need to
crawl the Internet by ourselves and the professional search
infrastructure and search algorithms of search engines can
help us get high-quality candidate URLs.

The key issue is how to find the common features shared
by LG pages and transform them into efficient search terms.

https://www.gtanet.ca/looking-glass/
https://www.gtanet.ca/looking-glass/


Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

For example, a query using “looking glass" as the search
term returns many pages that are related to mirror instead of
the looking glass services we are talking about. This search
term is not efficient and its results would consume a lot of
resources if they are sent to our verifier for further analysis.
Considering a web page usually contains three components,
i.e., URL, Title, and Body, which have different characteristics,
we utilize appropriate methods to analyze seed pages on each
of these three components to mine common features and
construct corresponding search terms.

2.3.1 Title-based search terms. In view that the page title is
a short description of a web page and usually contains only
a few words, the popular frequent itemset mining algorithm
Apriori [17] can be used to extract frequent words or phrases
from a list of LG titles as shared features.
One point we should notice is that some page titles in-

clude the names or AS numbers of the organizations that
deploy the LG pages. Treating these names and numbers as
the same keyword can give us more valuable information
on the features shared by LG page titles. Specifically, we
replace all names and AS numbers with two virtual words,
namely ORG and ASN, before we extract frequent phrases.
After extracting, if these two virtual words are found in the
frequent phrases, we will replace them with the name and
the number of every AS on the Internet to construct a series
of search terms.

In the above process, it is challenging to determine which
words in titles represent the names of organizations. Al-
though CAIDA’s AS to Organization Mapping Dataset [5]
provides the organization name of each individual AS, differ-
ent organizations may have different naming conventions
when embedding their names in LG page titles, which can be
full names, initials, or other abbreviations. Wrong matching
and replacing will affect the accuracy of extracted shared fea-
tures. To deal with the problem, we find that LG page titles
are more likely to embed the second-level domain names of
company websites to indicate the organization names. For
example, an LG page1 title “Milecom Looking Glass" does
not contain the corresponding full organization name “LLC
Milecom" but contain “milecom" (the second-level domain
of the company website http://www.milecom.ru ). There-
fore, we collect the company website URL of each individual
AS from PeeringDB and get 13K URLs in total. These URLs
are parsed using the Tldextract python library [13] and we
obtain a list of second-level domains. Then we can replace
the word or phrase (in titles) that matches one second-level
domain with ORG.
After replacing, we treat each title as a transaction and

the title words as items and use the Apriori algorithm to
mine frequent itemsets. Table 1 shows the frequent itemsets
1 https:// lg.milecom.ru/

and their corresponding support when the support threshold
is specified to be 0.12. We find that each of the frequent 1-
itemsets and 2-itemsets is a proper subset of one frequent
3-itemsets, which means the search results from the frequent
1-itemsets and 2-itemsets are supersets of the search results
from the frequent 3-itemsets. To balance the recall rate and
accuracy rate, we choose the frequent 3-itemsets to construct
search terms.

frequent 1-itemsets frequent 2-itemsets frequent 3-itemsets
1-itemset support 2-itemset support 3-itemset support
{lookinд } 0.805 {lookinд, дlass }0.804 {lookinд, дlass ,ORG } 0.343
{дlass } 0.805 {ORG , lookinд } 0.344 {lookinд, дlass , ASN } 0.194
{ORG } 0.403 {ORG , дlass } 0.343
{ASN } 0.220 {ASN , дlass } 0.194

{ASN , lookinд } 0.194

Table 1: The frequent itemsets with their correspond-
ing support when the support threshold is set 0.12.

2.3.2 Body-based search terms. The body of LG pages usu-
ally contains richer information compared to their titles and
URLs, which means analyzing bodies might be more helpful
for us to construct efficient search terms. On the other hand,
it is also more complicated than analyzing titles and URLs.
Page bodies can containmanywords, and somewords appear
frequently but they do not suggest any common features of
LG pages. For example, the frequent words network and help
in known LG bodies are also frequently used in webpages
that are not related to any looking glass services2. There-
fore, we choose to use the TF-IDF (Term Frequency–Inverse
Document Frequency) [50] weighting model to analyze page
bodies. The TF-IDF can identify words that frequently ap-
pear in known LG bodies but do not frequently appear in
non-LG pages, thereby helping to construct more efficient
search terms.
In order to reduce the computation complexity, we first

extract informative texts from all valid seed html files and
these texts are merged into a document, which is referred to
as the text-document. We notice that most LG pages usually
contain html control elements such as input, select, and button
to enable users to conduct measurements using their looking
glass services. Therefore, we use the lightweight python
library Beautiful Soup [1] to extract the texts between the
opening and closing tags inside these three elements from
each individual LG page and construct the text-document.
Now we can use the TF-IDF model to analyze the text-

document and retrieve frequent words that exclusively ap-
pear in the text-document. This model requires an IDF corpus
to be used to exclude frequent words that appear in all kinds
of documents. For this purpose, we collect 11,314 documents

2Such as https://www.foxnews.com/ and https://abcnews.go.com/

http://www.milecom.ru
https://lg.milecom.ru/
https://www.foxnews.com/
https://abcnews.go.com/


Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

from 20Newsgroups [38] as the IDF corpus. In the TF-IDF
weighting model, each text word t in the text-document is
assigned a weightwt , which is calculated as follows,

wt = TFt × IDFt

IDFt = log
1 + N
1 + nt

+ 1.
(1)

Here, TFt (term frequency) means the frequency of t in the
text-document, while IDFt (inverse document frequency)
stands for the inverse of the frequency of t in other doc-
uments, N = 11, 314 in our case, and nt is the number of
documents collected from 20Newsgroups that include the
word t .

Obviously, the words with highwt frequently appear in
the text-document but do not appear frequently across other
documents, therefore their appearance is likely to suggest an
LG page. In this way, we extract 49 words (such as ip_address,
router, traceroute, etc.) withwt > 0.05. Each individual word
combined with the word looking glass becomes a search term.

2.3.3 URL-based search terms. In fact, search engines are
running the algorithm to rank pages according to their rele-
vance to the search term. Therefore, we can exploit search
engines directly and input 2,991 known LG URLs as search
terms to get candidate URLs. For example, if we use https:
//www.sprint.net/tools/looking-glass as the search term
in Bing, the search results will include another LG URL
https:// lookingglass.centurylink.com/ . As a result, each LG
URL can serve as a search term.

2.4 Classification procedure design
In the previous subsection, we collect a lot of candidate URLs,
which are likely but not necessarily providing looking glass
services. In other words, some of them are relevant URLs
and some are irrelevant URLs. In this subsection, we design
a classifier to classify all candidates into relevant or not.
The irrelevant URLs will be discarded to avoid unnecessary
resource consumption in exploring them deeper.

2.4.1 Design considerations. There are mainly two consid-
erations in designing the classifier.
Our selected classification algorithm must be able to deal

with the problem of lacking labeled non-LG pages (negative
samples). Classifying candidate URLs as either relevant or
irrelevant is a binary classification problem. Traditional su-
pervised classification algorithms, such as SVM [22] and
decision tree [40], require both positive and negative labeled
samples for training. However, in this work, we only have a
small set of known LG pages (positive samples) and a large
number of unlabeled candidate URLs, making the supervised
classification algorithms infeasible. On the other hand, if
we take unsupervised algorithms to solve our classification

problem, the labeled information of known LG pages will be
wasted so the classification results may be unsatisfactory. In
this paper, we take a PU learning algorithm [27], which can
train a classifier to distinguish between positive and negative
instances in the unlabeled set given a small set of positive
samples and a set of unlabeled samples.

To classify candidate URLs efficiently and correctly, we need
to carefully select features. To accurately classify candidate
URLs, we should exploit all available information about them,
e.g., their html files. However, the candidates obtained from
the crawling procedure are only URLs without downloaded
html files. Downloading the html files that correspond to
a large number of candidate URLs is time-consuming and
bandwidth-intensive, making the classification process inef-
ficient. We notice the URLs of LG pages are usually different
from that of non-LG pages. Therefore, we would like to try
to pre-filter out some irrelevant pages based on only URL
features. The pages that are pre-filtered out do not need to
be downloaded. We just download the remaining pages to
classify them based on both URL and carefully selected html
content features. Specifically, we develop a two-step clas-
sifier, including a URL-based pre-filter and a content-based
classifier, which can have good efficiency and accuracy.

2.4.2 Feature extraction. PU learning models only work
with fixed-length numeric inputs, while both URLs and html
files consist of strings of various lengths. Therefore, we need
to conduct feature extraction which builds appropriate fea-
ture vectors from the raw data of URLs or html files. The
feature vectors should be informative and non-redundant to
facilitate subsequent training and classifying steps.

Extracting feature from URLs. The features extracted
from URLs are used to construct our pre-filter. To convert
a collection of URLs into fixed-length feature vectors, we
use a typical method of text feature extraction, namely the
bag-of-words model. It first creates an ordered vocabulary
including all unique words in the URLs of the collection,
and then each unique word gets an integer index. For every
URL in the collection, the bag-of-words model constructs
its feature vector U , and Ui is set to be the times the word
whose index is equal to i appears in the URL.

Extracting feature from html files. Intuitively, html
content may contain richer information comparedwith URLs.
Therefore, the candidate URLs that pass through the pre-filter
will be further checked by a content-based classifier, which
is constructed based on features of URLs and html content.
Of course, not all texts within html files are informative and
uninformative texts may negatively affect the classification
results of the PU-Bagging algorithm. As introduced in §2.3,
page titles and texts inside input, select, and button elements
in page bodies are valuable to distinguish between relevant
and irrelevant URLs. Additionally, values of id attribute, name

https://www.sprint.net/tools/looking-glass
https://www.sprint.net/tools/looking-glass
https://lookingglass.centurylink.com/
https://lookingglass.centurylink.com/


Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

attribute, and value attribute inside the above three elements
are also informative. They are not considered in constructing
search terms in §2.3 because search engines usually ignore
all attribute values when they answer queries from users.
We combine all carefully selected informative texts extracted
from the URL and the html file of a page, and use the bag-of-
words model to transform the texts into a numeric feature
vector to serve as a representation of the page.

2.4.3 PU-Bagging model training. Both the URL-based pre-
filter and content-based classifier aim to classify candidate
URLs as relevant (positive class) or not (negative class) using
only a small set of known LG pages (positive labeled samples).
In this work, we choose the PU-Bagging algorithm [45],
which is a typical PU learning approach, to complete the
pre-filter and classifier.

PU-Bagging algorithm employs the bootstrap aggregation
technique (named as bagging) to obtain an aggregated classi-
fier from positive and unlabeled samples. To bypass the issue
of lacking labeled negative instances, it repeatedly draws
random bootstrap samples from unlabeled samples as nega-
tives, and trains a supervised classifier through the drawn
negative and known positive samples. Then multiple classi-
fiers are aggregated into a classifier, which can reduce the
variance induced by the randomness in selecting “negative”
samples. Mordelet et. al. [45] reported that the PU-Bagging
algorithm can achieve outstanding performance and fast
running speed.

Algorithm 1 PU-Bagging
Require: P, U, N = number of base classifier, K = size of

bootstrap samples, T = threshold
Ensure: a classification function r → {0, 1}
1: Initialize ∀x ∈ U,n(x) ← 0, f (x) ← 0
2: for each n = 1 to N do
3: Draw a bootstrap sample set Un of size K in U
4: Train a SVM classifier fn using samples on P and Un
5: for each x ∈ U \ Un do
6: f (x) ← f (x) + fn(x)
7: n(x) ← n(x) + 1
8: end for
9: end for
10: s(x) = f (x)/n(x) for x ∈ U
11: Return

r (x) =

{
0 s(x) < T
1 s(x) >= T

Here, we take the URL-based pre-filter as an example to
introduce how the PU-Bagging algorithm works. Let P de-
notes the positive labeled samples set which consists of all
the known LG URLs. The unlabeled samples set U consists

of the candidate URLs. Each sample in the two sets is repre-
sented by a feature vector. The PU-Bagging algorithm takes
the set P andU as inputs, repeats N rounds to train N binary
base classifiers, and averages their predictions as classifica-
tion results of the aggregated classifier. The details of the
algorithm are shown in Algorithm 1.

Similarly, our content-based classifier is also trained using
the PU-Bagging algorithm. In the training, the algorithm
takes as inputs the set of known LG pages (P) and the set of
remaining candidate pages (Ur ) which are classified to be
relevant by the URL-based pre-filter.

3 EXPERIMENTAL AND EVALUATION
RESULTS

We implement the above focused crawler and present exper-
imental and evaluation results in this section.

3.1 Effectiveness of the similarity-guided
search

Taking the first round of iteration (whose input is the LG
seed set) as an example, we conduct the hyperlink-guided
search to extract hyperlinks from 1,736 successfully down-
loaded seed html files and collect 4,436 unique candidate
URLs. In the meanwhile, we conduct the similarity-guided
search to analyze the URL, title, and body component of
LG seed pages and obtain 100,987 search terms. Specifically,
97,947 of them are constructed by replacing ORG and ASN in
the two frequent 3-itemsets mined from titles, 2,991 of them
are constructed by taking each individual LG seed URL as
a search item, and 49 search terms are constructed by ana-
lyzing LG page bodies. Each search term is entered into the
Bing search engine, and from each search we collect at most
top 10,500 returned search results as candidate LG URLs.

To evaluate the effectiveness of the similarity-guided search,
we define four metrics: the number of relevant URLs obtained
from crawled candidate URLs (after the processes in §2.4),
the relevant URL concentration rate (the fraction of crawled
candidate URLs that are classified as relevant), the number of
obscure automatable LG VPs finally obtained from crawled
candidate URLs (after the processes in §4.1), the automatable
VP concentration rate (which equals the number of obtained
obscure automatable LG VPs divided by the number of can-
didate URLs). These metrics are good measures of the gains
from and the efficiency of our similarity-guided search.
Table 2 shows an overview of the results of the experi-

ments. It is observed the similarity-guided search helps us ob-
tain 4,111 relevant URLs and 608 obscure automatable LGVPs
in total, which is about 24 (13) times more than relevant URLs
(obscure automatable LG VPs) from the hyperlink-guided
search. The results indicate that our similarity-guided search,
which benefits from carefully constructed search terms and



Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

Search Terms Candidate
URLs

Relevant
URLs

Relevant URL
Concentration

Obscure
VPs

VP Con-
centration

Hyperlink
guided

— 4,436 147 3.31% 48 1.08%

97,947 (Title) 461,799 2,511 0.54% 423 0.09%
Similarity 2,991 (URL) 433,865 1,901 0.44% 324 0.07%
guided 49 (Body) 19,793 1,114 5.63% 470 2.37%

100,987 (ALL) 877,021 4,111 0.47% 608 0.07%
ALL 100,987 919,893 4,226 0.48% 630 0.07%

Table 2: An overview of experimental results pro-
vided by running the hyperlink-guided search and the
similarity-guided search.

the well-developed search engine, can effectively find many
relevant pages and obscure LG VPs that cannot be found
by the widely used hyperlink-guided search. Besides, we
find that the search terms constructed from page bodies can
produce search results with larger concentration rates than
the search terms from URLs and titles. As shown in table
2, the relevant URL concentration rate and the VP concen-
tration rate of the body-based search terms are 5.63% and
2.37% respectively, which are much higher than those of the
URL-based search terms (0.44% and 0.07%) and the title-based
search terms (0.54% and 0.09%). Of course, it does not mean
that URL-based and title-based search terms have no value,
they can also help find many relevant pages and obscure LG
VPs that cannot be found by the body-based search terms.

Please note the hyperlink-guided search and similarity-
guided search will be conducted every time we find new
relevant LG pages. Such iteration is effective for obtaining
more relevant URLs and obscure VPs. Besides the results of
the first iteration described above, in later three iterations,
we additionally collect 2,047,333 candidate URLs and obtain
46,551 relevant URLs and 280 obscure automatable VPs.

3.2 Effectiveness of the two-step classifier
To evaluate the performance of the URL-based pre-filter and
content-based classifier, we use the area under the receiver
operating curve (AUC), the true positive rate (TPR), and the
false positive rate (FPR) as evaluation metrics. The higher
the AUC, the better the performance of the classifier at dis-
tinguishing between the positive and negative classes.

3.2.1 Evaluation on the URL-based pre-filter. We randomly
split the whole dataset from the first round of iteration which
has 2,991 LG seed URLs (positive URLs) and 919,893 unla-
beled candidate URLs into three subsets: training dataset
(98%), validation dataset (1%) and testing dataset (1%). Unla-
beled URLs in the validation and testing dataset are manually
labeled, thus the two datasets are fully labeled, which will be
used for tuning hyperparameters and evaluating generaliza-
tion ability respectively. Table 3 shows the statistics of these
datasets. A URL is said to be “positive" if it provides looking

glass services and otherwise it is said to be a “negative URL".

Whole
dataset

Training
dataset

Validation
dataset

Testing
dataset

Positive URLs 2,991 2,931 Positive URLs 108 102
Unlabeled URLs 919,893 901,495 Negative URLs 9,121 9,127

Table 3: The number of different kinds of URLs for
each dataset.

Hyperparameter tunning. There are some hyperparam-
eters, i.e., the number of base classifier N , the size of boot-
strap samples K , and the classification thresholdT , that need
to be carefully chosen for training a good pre-filter. We train
the URL-based pre-filter under different hyperparameters
using the training set and get a series of trained pre-filters.
According to their AUC performance on the validation set,
we choose N to be 100, K equal to the number of positives
in the training set (i.e. 2931) as optimal hyperparameters,
which can help train a pre-filter with a high AUC of 0.9657.

In addition, the values of T will have a great impact on
classification results. The results can bemeasured by TPR and
FPR. A high TPR means most candidate URLs that are really
providing looking glass services are classified as relevant. A
low FPR means few candidate URLs that are not providing
looking glass services are classified as relevant. For the pre-
filter, to some extent, a high TPR is more important than
a low FPR, because a low TPR rate means a lot of LG sites
are filtered out incorrectly, while a low FPR just results in
more resource overhead consumed by the later content-based
classifier. Figure 2(a) plots FPR and TPR of the trained pre-
filter under different T on the validation dataset when K =
2931 and N = 100. The trained pre-filter with T = 0.2072
can achieve a high TPR of 99.07% at FPR of 15.54%, which is
more preferred for us. Therefore, we choose T to be 0.2072.
Classification results. To evaluate the generalization

ability of the trained pre-filter with the optimal hyperpa-
rameters, we run it on the labeled testing dataset, which
contains 102 positives and 9,127 negatives. The running re-
sult shows that our pre-filter produces a high TPR of 96.08%
at FPR of 15.36%, which is close to its performance on the
validation dataset. We can see that, in the testing dataset, the
pre-filter filters out 7,725 negative URLs, which helps us save
the resources of downloading their html files. Meanwhile, it
only filters out 4 positive URLs which have a relatively small
impact on our final results.
The pre-filter performs well and we now use it to clas-

sify all 919,893 candidate URLs. 789,967 candidate URLs are
classified as irrelevant and they are filtered out immediately.
The remaining 129,926 candidate URLs are classified as rele-
vant by the pre-filter, and we name them as pre-filtered URLs.
These pre-filtered URLs will be further classified by using



Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

the content-based classifier. Our designed pre-filter can reduce
the number of candidate URLs to be downloaded by about 85%
with almost no loss of LG URLs, significantly improving the
efficiency of classification.

Figure 2: (a) The distribution of TPR and FPR of the
trained pre-filter under different T . (b) The distribu-
tion of TPR and FPR of the trained classifier under
different T .

3.2.2 Evaluation on the content-based classifier. We down-
load html files of the 129,926 pre-filtered URLs using the
lightweight python library Requests [9]. Some URLs respond
with error messages and we have to discard them. 77,113
URLs respond successfully and we get their html files. As
introduced in §2.2.1, there are 1,085 valid seed html files that
are providing looking glass services now. These successfully
downloaded unlabeled html files and seed html files are used
as the whole dataset to train the content-based classifier.
Since the whole dataset here is smaller than that of the pre-
filter, we need to increase the ratios of the validation and test
dataset to the whole dataset to obtain sufficient evaluation
samples. As a result, we randomly split the whole dataset
into three subsets: training dataset (94%), validation dataset
(3%), and testing dataset (3%). Unlabeled pages in the valida-
tion and testing dataset are manually labeled. The statistics
of these datasets are shown in Table 4.

Whole
dataset

Training
data

Validation
data

Testing
data

Positive pages 1,085 1020 Positive pages 63 77
Unlabeled pages 77,113 724,86 Negative pages 2,283 2,269

Table 4: The number of different kinds of pages for
each dataset.

Hyperparameter tunning. Similar to the above process
of determining hyperparameters for the pre-filter, we choose
N to be 100 and K to be 1020 as optimal hyperparameters,
which can help train a classifier with a high AUC value of
0.97. We further determine T . Figure 2(b) plots FPR and TPR
of the trained classifier under different T when K = 1020

and N = 100. For the content-based classifier, we would
like to have both high TPR and low FPR, which means most
truly positive pages will be classified as relevant, most truly
negative pages will be filtered out and the probability for
the obtained relevant pages to be LG pages is high. It can be
seen that the trained classifier withT = 0.4292 can achieve a
high TPR of 95.24% and a low FPR of 4.25% on the validation
set. So we choose T to be 0.4292.
Classification results. To evaluate the generalization

ability of the classifier, we run it on the labeled testing dataset,
which consists of 77 positive pages and 2,269 negative pages.
It shows our classifier has a high TPR (96.10%) and a low FPR
(4.10%). In other words, in the testing dataset, the classifier
filters out 2,176 negative pages, which can help us save the
resources of trying to retrieve VPs from them. Meanwhile, it
only drops 3 positive pages.
Now we use the content-based classifier to classify the

77,113 pre-filtered URLs. 4,226 URLs are classified as relevant
by the classifier. We name them as relevant URLs and will
further try to retrieve automatable VPs from these relevant
pages for practical applications.
It worths noting that all relevant URLs will serve as new

LG seed pages and we will conduct the crawling procedure
based on these new seeds. The new search process will give
us new candidate URLs and they will be further classified
by our pre-filter and classifier. This process repeats itera-
tively, and the 50,777 relevant URLs from all iterations will
be analyzed to facilitate practical applications later.

4 PRACTICAL APPLICATIONS
Through the focused crawler, we obtain relevant pages which
have high probabilities to be LG pages. These relevant pages
have been very useful for measurement researches. For ex-
ample, it becomes feasible for a researcher to retrieve a list
of available VPs by manually analyzing every relevant page,
and manually use these VPs to conduct measurement com-
mands. As for researchers who require large-scale or periodic
measurements, it will be more practical if we automate the
use of these VPs. In this section, we develop a tool to re-
trieve automatable LG VPs and show practical values of the
automatable obscure LG VPs in facilitating measurement
researches. The tool and the retrieved automatable LG VPs
will be publicly accessible later.

4.1 Retrieving automatable LG VPs
LG sites usually have different input interfaces to collect and
parse measurement requests. The lack of input interface stan-
dardization hinders the automatic use of LG VPs. Therefore,
we need to develop a tool to automatically retrieve input in-
terface information about VPs and check whether these LG



Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

VPs are automatable by analyzing responses to measurement
requests that are automatically issued by us.

4.1.1 Retrieving information about VPs. We design a tem-
plate matching and a keyword matching method to retrieve
the web-based input interface information about VPs by de-
riving more templates and matching relevant pages with the
templates or keywords.

Matching with templates. Many deployments of LG
services are based on several popular open-source projects
[24, 29]. These open-source projects have different input in-
terface specifications. In this work, we derive eight input
interface templates by analyzing html files created by each
project that is mentioned in papers [29] and [24]. Each tem-
plate records the name, type, and purpose of every input
field within the form element. We say that a relevant page
matches a template if each pair of input field name and type
within its form element is the same as the template, and the
page is referred to as a template-matching page. In total, 1,302
relevant pages are found to be template-matching pages.

Matching with keywords. As for the remaining rele-
vant pages, we find some of them have input fields that are
intended for the same purpose as the input fields in the tem-
plates. However, the names of these input fields do not match
the templates. We search for relevant pages that contain LG-
specific keywords (ping, trace, or bgp) in their form elements,
and refer to these pages as keyword-matching pages. Overall,
322 relevant pages are found to be keyword-matching pages.

For the template-matching and keyword-matching pages,
we automatically summarize the information of each VP (i.e.
all commands it supports and the required input fields to run
each command and how to fill them) into a single file, named
as the VP meta-file. Overall, we retrieve 3,848 VPs and they
enable 17,753 commands in total. As a comparison, we also
use the above methods to analyze the 1,085 seed pages that
are in operation. 791 seed pages are found to be template-
matching or keyword-matching pages. These pages provide
4,432 VPs which support 23,024 commands.

4.1.2 Automatically issuing measurement requests. With the
VP meta-file, each measurement request can be translated to
the action of filling in the input fields of the corresponding
form element with specific values. Mechanize library is used
to programmatically fill in the required input fields of the
form and send the form to the corresponding web server.
Once the server receives the form data, it will respond to the
measurement request and return measurement results.

4.1.3 Analyzing responses to determine automatable VPs. If
one VP can successfully respond to our measurement re-
quests, we refer it to as an automatable VP. Specifically, we
automatically issue ping measurement requests to ask the

VP to ping a controlled machine, which runs tcpdump to cap-
ture all incoming ICMP packets. If the machine sees ICMP
ping packets arriving, it means the VP is automatable. In the
meanwhile, the IP address of the VP can be extracted from
the ICMP packets. We can then learn the location of the VP
from its IP using IP2AS and geolocation databases, which
can facilitate researchers to select VPs when they need to
conduct measurements from a specific country and AS.

Using the above methods, we successfully determine 1,446
automatable VPs from the seed LG pages, and 1,296 automat-
able VPs from the relevant pages. Some VPs from different
pages refer to the same server/router (IP address), which
means they are the same vantage point. After deduplication,
we find that 910 automatable VPs from the relevant pages
are not included in any seed page, which are referred to as
obscure automatable VPs. Automatable VPs that are included
in the seed pages are referred to as known automatable VPs.

4.1.4 Discussion. A relevant page is confirmed to be pro-
viding LG services if our tool can retrieve automatable VPs
from it successfully. But it does not suggest that the page
is not providing LG service even if the tool cannot retrieve
automatable VPs from it. One reason is the diversity of LG
pages makes it difficult to retrieve input interface informa-
tion about all LG pages. Our tool can only deal with a part
of LG pages. Another reason is that some LG pages restrict
automated access. To obey their requirements, the way our
tool issues measurement requests does not accomplish the
reCAPTCHA verification, thus LG VPs from LG pages that
include the reCAPTCHA cannot be retrieved by our tool.

4.2 Analysis and applications of the
automatable VPs

Researchers have noticed the limited geographic and net-
work coverage of available VPs hinders our comprehensive
understanding of the Internet [31]. It would be valuable if
our discovered obscure automatable VPs can support diverse
measurement commands and bring geographic and network
coverage improvements. We compare the 910 obscure au-
tomatable with known VPs in terms of geographic and net-
work coverage to show their practical values. Moreover, we
introduce a case study to demonstrate their potential values
in improving Internet topology completeness.

4.2.1 Diverse measurement capabilities. Each automatable
LG VP may allow the execution of diverse measurement
commands. We plot the number of obscure and known au-
tomatable VPs that support each command in Figure 3. It can
be seen that our work can significantly increase the number
of automatable VPs that support each command, which is
beneficial to both data plane and control plane research.



Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

Figure 3: The number of automatable VPs that support
each command.

4.2.2 Coverage improvements. In the following, we will an-
alyze geographic and network coverage improvements that
can be brought by our discovered obscure automatable VPs.
• Geographic coverage improvements.

Although there are some public IP geolocation databases,
it is well known that obtaining accurate IP to geolocation
mappings is still a challenge. We find the country and city
level locations of VPs from pages that match the template
of Telephone LG project [11] have been explicitly given in
html files. We try to use this reliable geographic informa-
tion. Through regular expressions matching, we successfully
retrieve the country-level locations about 390 VPs and city-
level locations about 316 VPs. For the remaining VPs, we
use a paid IP2location DB9 database to help map them into
country-level and city-level locations. By comparing the DB9
database with the reliable geographic information, we find
the country-level accuracy of the DB9 database can achieve
97% when we apply the database to the 390 VPs with known
country-level locations, which is acceptable.

Figure 4: The geographic coverage of 1,446 known au-
tomatable VPs (blue points) and 910 obscure automat-
able VPs (red points).

Figure 4 plots the geographic coverage of 1,446 known
automatable VPs (blue points) and 910 obscure automatable
VPs (red points). The size of points represents the number
of VPs in the corresponding geographic area. 1,446 known

automatable VPs are distributed in 386 cities of 75 coun-
tries, and 910 obscure automatable VPs cover 282 cities in 55
countries. The obscure VPs enable researchers to execute mea-
surement commands from 8 new countries and 160 new cities
where no known LG VPs have been found before. In particular,
the 8 countries are mainly distributed in East Africa and
South Asia, whose network connectivities and performance
have attracted a lot of attention of researchers recently.
• Network coverage improvements.

Inferring router ownership is also difficult.We notice some
LG pages tend to explicitly give ASNs of their VPs in html
files, which we think is a reliable VP2AS mapping source.
Through regular expressions matching, we obtain the ASN
information about 526 VPs. Then we use the bdrmapIT [42]
tool to construct an IP2AS mapping dataset based on the pub-
lic dataset of traceroutes from CAIDA’s Archipelago (Ark)
[12] in December 2019. The dataset can help obtain the ASNs
of 323 VPs, which are not available from their html files. For
the remaining VPs, we query the Routeviews Prefix to AS
mappings dataset [10].

Our analysis results show that the obscure automatable VPs
enable researchers to execute measurement commands from
270 exclusive ASes where no known LG VPs have been found
before. The ASes in the Internet hierarchy can be divided into
three tiers, i.e., tier-1, tier-2, and stub tier, according to the
data collected from wiki [15]. We categorize the ASes of VPs
and plot the numbers of ASes in each tier in Figure 5(a). It is
observed that the 910 obscure VPs are more concentrated in
the stub tier compared to the known VPs. Especially, 269 of
the 270 exclusive ASes are all in the stub tier. The previous
studies [30, 48] suggested the incompleteness of the AS-level
topology can be improved by placing VPs on the edge of
the Internet. Therefore, the VPs found by us are valuable for
improving the completeness of the Internet topology.

Figure 5: (a) Categorizing the ASes of VPs according
to network tier; (b) The distribution of customer cone
sizes of ASes covered by different VP datasets.

Besides web-based LG sites, there are other types of plat-
forms providing VPs to collect measurement data. Some VPs



Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

just provide measurement results and do not allow users to
run their own commands, and some VPs only allow privi-
leged users. Although these platforms are different from LG
sites, in order to comprehensively evaluate the value of our
findings, we still compare our findings with the VPs provided
on other platforms, such as RIPE RIS, Ark and RouteViews.
Table 5 shows the number of ASes and exclusive ASes cov-
ered by the VPs of each platform. We find that the obscure
automatable LG VPs exclusively cover 262 ASes, i.e., there
are no VPs deployed by all other platforms in these ASes.

Ark
VPs

RIPE RIS
VPs

RouteViews
VPs

Known LG
VPs

Obscure
LG VPs

ASes 115 520 270 491 369
Exclusive ASes 67 354 135 405 262

Table 5: The number of ASes and exclusive ASes cov-
ered by VPs of each platform.

The customer cone size [41] of one AS is also an indicator
of its location in the hierarchical structure of the Internet. We
collect the customer cone size of each AS from CAIDA’s AS
rank project [4], and plot the distribution of customer cone
size of ASes exclusively covered by each dataset in Figure
5(b). It can be seen that about 47% of the 262 ASes exclusively
covered by the obscure automatable VPs have a customer
cone size of 1, and 80% have a customer cone size smaller
than 10. Compared to the ASes exclusively covered by other
platforms, our exclusive ASes tend to be at the edge of the
Internet, which will bring different views of the Internet.

4.2.3 A case study in improving topology completeness. In
the following, we introduce a simple case study in which we
successfully collect AS-level routing paths from 8 obscure
VPs (0.9% of the 910 VPs) that support both commands of
show ip bgp summary and show bgp neighbor ip advertised
(or received) routes to help improve topology completeness.
• Collecting AS paths from VPs.

AS paths returned by the show bgp neighbor ip advertised (or
received) routes command can help construct the AS-level
Internet topology. We note that some popular Looking Glass
projects, such as HSDN [7] and Cougar [6], present input
interfaces of show bgp neighbor ip routes command (if any)
in the response page for a show bgp summary command.
Using the method of automatically issuing measurement

requests developed in §4.1, we can automatically conduct the
process of collecting AS paths from VPs. Specifically, with
the VP meta-file, we programmatically fill in the required
input fields to send the show ip bgp summary measurement
request to every VP using Mechanize library. Each generated
webpage will give the status of every BGP connection with
the VP and the ASN and IP address of its neighboring BGP

router for each BGP connection. Then, by visiting the hyper-
link of each neighbor IP, we can ask the VP to run show bgp
neighbor ip command to collect detailed information about
the neighbor IP, including a hyperlink for showing its adver-
tised (or received) routes. By further visiting the hyperlinks,
we send requests to the VP to run the command to collect
advertised (or received) BGP routes, where AS paths can be
extracted using the regular expressions matching method.
The script used for automatically collecting AS paths from
VPs will be also publicly accessible.
• Improving AS-level topology completeness.

Using the above method, we successfully extract AS path
information from 14 known VPs and 8 obscure VPs. As a
comparison, we also construct AS topologies based on BGP
data collected from two popular BGP collector projects: RIPE
RIS and RouteViews. They deploy route collectors peering
with commercial ISP networks via BGP sessions and collect
BGP updates and RIB dumps from VPs in these ASes. We
download BGP routing table snapshots observed from all
RouteViews and RIS route collectors in December 2020.

Known LG
VPs

Obscure
LG VPs

RIPE RIS RouteViews ALL

ASes Observed 44,955 44,355 44,952 45,339 45,635
Exclusive 247 10 12 271 -

AS linksObserved 100,356 76,907 154,828 204,889 253,719
Exclusive 8,318 1,428 37,383 85,450 -

Table 6: The number of observed and exclusive ASes,
AS links extracted from each dataset.

Table 6 shows the number of observed and exclusive ASes
and AS links that are extracted from each dataset. We find
using the 8 obscure VPs can exclusively observe 10 ASes and
1,428 AS links, which cannot be discovered by all other RIPE
RIS VPs, RouteViews VPs, and 14 known LG VPs.

Discussion. Other discovered obscure VPs are also useful
in improving the completeness of AS-level topology. In fact,
the number of obscure automatable VPs that support tracer-
oute or show ip bgp routes command is much more than that
used in the case study (see Figure 3). For VPs that support
traceroute, we can automatically ask them to traceroute to
a list of targeted IP addresses and get a lot of paths. For the
VPs that support show ip bgp routes, we can ask them to re-
turn BGP routes for a list of user-specified network prefixes.
The problem to be solved is how to choose the target IPs for
traceroute requests and how to specify the prefixes for show
ip bgp routes requests. Due to the request rate limits of some
VPs, the target IPs and prefixes should be carefully selected
to achieve good performance in improving the topology com-
pleteness. We leave it as future work and do not use these
VPs in this case study.



Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

5 ETHICAL CONSIDERATIONS
Ethical issues have been considered in this work. The LG sites
publicly accessible on the web are deployed to provide win-
dows to understand the Internet and troubleshoot Internet
connectivity and performance issues, therefore, discovering
and using them to facilitate Internet measurement researches
are reasonable applications. Besides, our work does not in-
volve any operations that violate the requirements of LG
sites. For example, when we retrieve automatable LG VPs,
we did not try to bypass the verification code for LG pages
that use the reCAPTCHA to restrict automated access. An-
other important ethical consideration is to avoid excessive
overhead on LG sites when we use them. To this end, we
limit the query rate to visit each LG site once every half an
hour when we determine automatable VPs and use LG sites
to collect AS-level paths in the case study. It worths noting
that the system developed to automate the use of LG VPs in
§4.1 is not for accelerating measurements, but only for pro-
viding convenience for periodic measurements. In addition,
we also limit the number of search terms entered into the
Bing search engine in a given time period when we conduct
similarity-guided searching, thereby preventing abuse.

6 RELATEDWORK
Researchers have noticed that LG VPs are valuable for mea-
surement researches [20, 29, 37, 46, 47]. For example, in 2013,
Khan et.al [37] find using VPs from 304 well-known LG sites
can help discover 11K new AS links and 686 new ASes. How-
ever, existing works only use well-known LG sites. In this
paper, we aim to discover the LG sites that are not published
on well-known LG portal pages.
Focused crawlers are proposed to discover topic-specific

pages on the web. Whenever a topic is given, a specific fo-
cused crawler needs to be designedwith considerations of the
special characteristics of pages on the topic [19, 28, 49, 52].
For example, to discover medicinal plant pages, Pawar et.al
[49] argue that pages on the medicinal plant topic are usually
well connected and so they take hyperlinks in known medic-
inal plant pages as candidate URLs to crawl more pages on
this topic. As far as we know, there is no previous work on
designing focused crawlers to discover LG sites on the web.
Researchers find only taking hyperlinks of known topic-

relevant pages as candidate URLs canmissmany topic-relevant
pages [16, 23, 26, 28, 33]. There can be some relevant pages
that are indirectly connected to known topic-relevant pages
via multiple hops of irrelevant pages. So they propose to
explore a tunneling technique that allows crawlers to extract
hyperlinks of irrelevant pages to discover more relevant
pages. Designing a focused crawler based on the tunneling
technique is very sophisticated. Furthermore, in our scenario,
many LG sites are isolated and they are not connected to

known LG sites either directly or indirectly. The tunneling
technique cannot help us discover these LG sites.
Several previous works notice well-developed search en-

gines are valuable for designing a focused crawler to effi-
ciently find more malicious web pages [34], academic slides
[39]. Due to the different characteristics or different types
of web pages, their methods of constructing search terms
are not suitable for our problem. In this work, we design
a similarity-guided search that exploits search engines and
carefully mines search terms to find more LG pages.
The performance of a classifier depends on classification

algorithms and selected features. In scenarios with only a
small number of positive samples and a large number of
unlabeled samples, PU learning algorithms have been used
to avoid labeling training samples and achieved good perfor-
mance [54–56]. As for the selection of features, it needs to
adapt to different scenarios [18, 36, 43, 44, 53]. For example,
Jiyoung et.al [36] find link-based features, which represent
relations or links among pages, can performwell in detecting
spam pages due to their rich connection structure. Obviously,
link-based features are not suitable for our scenario because
of the poverty of links among LG sites. We carefully observe
the properties of LG sites and design appropriate URL-based
features and content-based features to classify pages.
The challenge of automatic use of LG VPs has drawn at-

tention from researchers in Periscope [29]. Periscope intro-
duces a matching method to unify disparate interfaces of
well-known LG VPs into a standardized querying API. It
only focuses on automating the use of VPs, while our work
mainly aims to discover obscure LG sites on the web.

7 CONCLUSION
In this article, we design an efficient focused crawler to dis-
cover obscure LG sites on the web. Faced by the challenge
that there exist poor hyperlink connections between LG sites,
our crawler designs a similarity-guided search that exploits
well-developed search engines and comprehensively mines
the common features shared by known LG sites. Results show
that the similarity-guided search can help discover more LG
sites. To classify candidate URLs into relevant or not, we
design a two-step PU learning classifier based on carefully
selected LG features to provide good classification perfor-
mance. The URL-based pre-filter can help us save significant
resource consumption in downloading a large number of
html files of irrelevant URLs. Moreover, compared to super-
vised learning based classifiers, our PU learning classifier
can avoid the time-consuming work to manually label nu-
merous samples. For the relevant pages obtained through the
focused crawler, we develop a tool to retrieve automatable
LG VPs to further facilitate practical applications.



Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

In total, we discover 910 obscure automatable LG VPs
which are not published on any well-known LG portal pages.
Our work significantly increases the number of automatable
VPs that are available to researchers, which is only 1,446
before our work (from all well-known LG sites). Besides,
the 910 obscure automatable LG VPs enlarge the geographic
and network coverage of available VPs and present potential
values in improving topology completeness in a case study.

As time goes on, some newly created LG sites may appear
on the web. In future work, we plan to periodically repeat
the process to update the list of relevant pages and automat-
able LG VPs. The well-developed search engines allow us
to specify a time period in each search request. In this way,
we can ask the search engine to only return results that are
newly indexed, which facilitates our incremental crawling.
The list of discovered relevant pages and automatable LG
VPs, and the source code of our focused crawler system and
automation tool will be public accessible, which can be very
valuable for future measurement researches.

REFERENCES
[1] [n.d.]. Beautiful Soup. Retrieved August, 2020 from https://pypi.org

/project/beautifulsoup4/
[2] [n.d.]. BGP4.as. Retrieved April, 2020 from http://www.bgp4.as/loo

king-glasses
[3] [n.d.]. BGPlookingglass.com. Retrieved April, 2020 from http:

//www.bgplookingglass.com
[4] [n.d.]. CAIDA AS Rank. Retrieved October, 2020 from http://as-

rank.caida.org/
[5] [n.d.]. The CAIDA UCSD AS to Organization Mapping Dataset. Re-

trieved April, 2020 from https://www.caida.org/data/as_organization
s.xml

[6] [n.d.]. Cougar Looking Glass. Retrieved September, 2020 from
https://github.com/Cougar/lg

[7] [n.d.]. HSDN Looking Glass. Retrieved September, 2020 from
https://github.com/hsdn/lg

[8] [n.d.]. PeeringDB. Retrieved April, 2020 from http://www.peeringdb.
com

[9] [n.d.]. Requests. Retrieved June, 2020 from https://pypi.org/project/r
equests/

[10] [n.d.]. Routeviews Prefix to AS mappings Dataset for IPv4 and IPv6.
Retrieved September, 2020 from https://www.caida.org/data/routing
/routeviews-prefix2as.xml

[11] [n.d.]. Telephone Looking Glass. Retrieved September, 2020 from
https://github.com/telephone/LookingGlass

[12] [n.d.]. The CAIDAUCSD IPv4 Routed /24 Topology Dataset. Retrieved
December, 2019 from https://www.caida.org/data/active/ipv4_routed
_24_topology_dataset.xml

[13] [n.d.]. Tldextract. Retrieved June, 2020 from https://pypi.org/project
/tldextract/

[14] [n.d.]. Traceroute.org. Retrieved April, 2020 from http://www.tracer
oute.org

[15] [n.d.]. Wiki. Retrieved September, 2020 from https://en.wikipedia.o
rg/wiki/Tier_1_network

[16] Ahmed Abbasi, Tianjun Fu, Daniel Zeng, and Donald Adjeroh. 2013.
Crawling credible online medical sentiments for social intelligence. In
2013 International Conference on Social Computing. IEEE, 254–263.

[17] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining
association rules between sets of items in large databases. In Proceed-
ings of the 1993 ACM SIGMOD international conference on Management
of data. 207–216.

[18] Hamidreza Alvari, Paulo Shakarian, and JE Kelly Snyder. 2017. Semi-
supervised learning for detecting human trafficking. Security Infor-
matics 6, 1 (2017), 1–14.

[19] Amalia Amalia, Dani Gunawan, Atras Najwan, and Fathia Meirina.
2016. Focused crawler for the acquisition of health articles. In 2016
International Conference on Data and Software Engineering (ICoDSE).
IEEE, 1–6.

[20] Brice Augustin, Balachander Krishnamurthy, and Walter Willinger.
2009. IXPs: mapped?. In Proceedings of the 9th ACM SIGCOMM confer-
ence on Internet measurement. 336–349.

[21] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen Schönwälder. 2015.
Lessons learned from using the Ripe Atlas platform for measurement
research. ACM SIGCOMM Computer Communication Review 45, 3
(2015), 35–42.

[22] Vanshita R Baweja, Rajesh Bhatia, and Manish Kumar. 2020. Support
Vector Machine-Based Focused Crawler. In Inventive Communication
and Computational Technologies. Springer, 673–686.

[23] Donna Bergmark, Carl Lagoze, and Alex Sbityakov. 2002. Focused
crawls, tunneling, and digital libraries. In International Conference on
Theory and Practice of Digital Libraries. Springer, 91–106.

[24] Luca Bruno, Mariano Graziano, Davide Balzarotti, and Aurélien Fran-
cillon. 2014. Through the looking-glass, and what eve found there. In
8th {USENIX} Workshop on Offensive Technologies ({WOOT} 14).

[25] Brian D Davison. 2000. Topical locality in the web. In Proceedings of
the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval. 272–279.

[26] Wei Dong, Hong Ni, Haojiang Deng, and Liheng Tuo. 2015. Gray Tun-
neling Based on Joint Link for Focused Crawling. In 3rd International
Conference on Mechatronics, Robotics and Automation. Atlantis Press,
859–862.

[27] Charles Elkan and Keith Noto. 2008. Learning classifiers from only
positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. 213–
220.

[28] Mohamed MG Farag, Sunshin Lee, and Edward A Fox. 2018. Focused
crawler for events. International Journal on Digital Libraries 19, 1
(2018), 3–19.

[29] Vasileios Giotsas, Amogh Dhamdhere, and Kimberly C Claffy. 2016.
Periscope: Unifying looking glass querying. In International Conference
on Passive and Active Network Measurement. Springer, 177–189.

[30] Enrico Gregori, Alessandro Improta, Luciano Lenzini, Lorenzo Rossi,
and Luca Sani. 2012. On the incompleteness of the AS-level graph: a
novel methodology for BGP route collector placement. In Proceedings
of the 2012 Conference on Internet Measurement Conference (IMC). 253–
264.

[31] Enrico Gregori, Alessandro Improta, Luciano Lenzini, Lorenzo Rossi,
and Luca Sani. 2014. A novel methodology to address the Internet
AS-level data incompleteness. IEEE/ACM Transactions on Networking
23, 4, 1314–1327.

[32] Enrico Gregori, Luciano Lenzini, and Valerio Luconi. 2017. AS-Level
Topology Discovery: Measurement strategies tailored for crowdsourc-
ing systems. Computer Communications 112 (2017), 47–57.

[33] Miyoung Han, Pierre-Henri Wuillemin, and Pierre Senellart. 2018.
Focused crawling through reinforcement learning. In International
Conference on Web Engineering. Springer, 261–278.

[34] Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Christo-
pher Kruegel, Marco Cova, and Giovanni Vigna. 2012. Evilseed: A

https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
http://www.bgp4.as/looking-glasses
http://www.bgp4.as/looking-glasses
http://www.bgplookingglass.com
http://www.bgplookingglass.com
http://as-rank.caida.org/
http://as-rank.caida.org/
https://www.caida.org/data/as_organizations.xml
https://www.caida.org/data/as_organizations.xml
https://github.com/Cougar/lg
https://github.com/Cougar/lg
https://github.com/hsdn/lg
https://github.com/hsdn/lg
http://www.peeringdb.com
http://www.peeringdb.com
https://pypi.org/project/requests/
https://pypi.org/project/requests/
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://github.com/telephone/LookingGlass
https://github.com/telephone/LookingGlass
https://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
https://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
https://pypi.org/project/tldextract/
https://pypi.org/project/tldextract/
http://www.traceroute.org
http://www.traceroute.org
https://en.wikipedia.org/wiki/Tier_1_network
https://en.wikipedia.org/wiki/Tier_1_network


Shuying Zhuang, Jessie Hui Wang, Jilong Wang, Zujiang Pan, Tianhao Wu, Fenghua Li, and Zhiyong Zhang

guided approach to finding malicious web pages. In 2012 IEEE sympo-
sium on Security and Privacy. IEEE, 428–442.

[35] Zitong Jin, Xingang Shi, Yan Yang, Xia Yin, Zhiliang Wang, and Jian-
ping Wu. 2020. TopoScope: Recover AS Relationships From Fragmen-
tary Observations. In Proceedings of the 2020 Conference on Internet
Measurement Conference (IMC). 266–280.

[36] Joyce Jiyoung Whang, Yeonsung Jung, Seonggoo Kang, Dongho Yoo,
and Inderjit S. Dhillon. 2020. Scalable Anti-TrustRank with Qualified
Site-level Seeds for Link-based Web Spam Detection. In Companion
Proceedings of the Web Conference 2020. 593–602.

[37] Akmal Khan, Taekyoung Kwon, Hyun-chul Kim, and Yanghee Choi.
2013. AS-level topology collection through looking glass servers. In
Proceedings of the 2013 Conference on Internet Measurement Conference
(IMC). 235–242.

[38] Ken Lang. 1995. Newsweeder: Learning to filter netnews. In Machine
Learning Proceedings 1995. Elsevier, 331–339.

[39] Jae-Gil Lee, Donghwan Bae, Sansung Kim, Jungeun Kim, andMun Yong
Yi. 2019. An effective approach to enhancing a focused crawler using
Google. The Journal of Supercomputing (2019), 1–18.

[40] Jun Li, Kazutaka Furuse, and Kazunori Yamaguchi. 2005. Focused
crawling by exploiting anchor text using decision tree. In Special in-
terest tracks and posters of the 14th international conference on World
Wide Web (WWW). 1190–1191.

[41] Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere, Vasileios Giot-
sas, and KC Claffy. 2013. AS relationships, customer cones, and vali-
dation. In Proceedings of the 2013 conference on Internet measurement
conference (IMC). 243–256.

[42] Alexander Marder, Matthew Luckie, Amogh Dhamdhere, Bradley Huf-
faker, KC Claffy, and Jonathan M Smith. 2018. Pushing the boundaries
with bdrmapit: Mapping router ownership at Internet scale. In Proceed-
ings of the 2018 conference on Internet Measurement Conference (IMC).
56–69.

[43] Srdjan Matic, Costas Iordanou, Georgios Smaragdakis, and Nikolaos
Laoutaris. 2020. Identifying Sensitive URLs atWeb-Scale. In Proceedings
of the 2020 Conference on Internet Measurement Conference (IMC). 619–
633.

[44] Luke K McDowell, Aaron Fleming, and Zane Markel. 2014. Evaluating
and extending latent methods for link-based classification. InWorkshop
on Formal Methods Integration. Springer, 227–256.

[45] Fantine Mordelet and J-P Vert. 2014. A bagging SVM to learn from
positive and unlabeled examples. Pattern Recognition Letters 37 (2014),
201–209.

[46] Reza Motamedi, Bahador Yeganeh, Balakrishnan Chandrasekaran,
Reza Rejaie, Bruce M Maggs, and Walter Willinger. 2019. On mapping
the interconnections in Today’s Internet. IEEE/ACM Transactions on
Networking 27, 5 (2019), 2056–2070.

[47] George Nomikos, Vasileios Kotronis, Pavlos Sermpezis, Petros Gigis,
Lefteris Manassakis, Christoph Dietzel, Stavros Konstantaras, Xeno-
fontas Dimitropoulos, and Vasileios Giotsas. 2018. O Peer, Where
Art Thou? Uncovering Remote Peering Interconnections at IXPs. In
Proceedings of the 2018 Conference on Internet Measurement Conference
(IMC). 265–278.

[48] Ricardo Oliveira, Dan Pei, Walter Willinger, Beichuan Zhang, and Lixia
Zhang. 2009. The (in) completeness of the observed internet AS-level
structure. IEEE/ACM Transactions on Networking 18, 1 (2009), 109–122.

[49] Nisha N Pawar and K Rajeswari. 2016. Study of different focused web
crawler to search domain specific information. International Journal
of Computer Applications, 2016, 136, 11 (2016).

[50] Juan Ramos et al. 2003. Using TF-IDF to determine word relevance in
document queries. In Proceedings of the first instructional conference on
machine learning, Vol. 242. New Jersey, USA, 133–142.

[51] Yuval Shavitt and Udi Weinsberg. 2009. Quantifying the importance
of vantage points distribution in Internet topology measurements. In
IEEE INFOCOM 2009. IEEE, 792–800.

[52] AK Singh and Navneet Goyal. 2017. Malcrawler: A crawler for seek-
ing and crawling malicious websites. In International Conference on
Distributed Computing and Internet Technology. Springer, 210–223.

[53] Harshal Tupsamudre, Ajeet Kumar Singh, and Sachin Lodha. 2019.
Everything Is in the Name–A URL Based Approach for Phishing De-
tection. In International Symposium on Cyber Security Cryptography
and Machine Learning. Springer, 231–248.

[54] Yingchao Wu, Qinghua Zheng, Yuda Gao, Bo Dong, Rongzhe Wei,
Fa Zhang, and Huan He. 2019. TEDM-PU: A Tax Evasion Detection
Method Based on Positive and Unlabeled Learning. In 2019 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 1681–1686.

[55] Peng Yang, Xiaoli Li, Hon-Nian Chua, Chee-Keong Kwoh, and See-
Kiong Ng. 2014. Ensemble positive unlabeled learning for disease gene
identification. PloS one 9, 5 (2014), e97079.

[56] Ya-Lin Zhang, Longfei Li, Jun Zhou, Xiaolong Li, Yujiang Liu, Yuanchao
Zhang, and Zhi-Hua Zhou. 2017. Poster: A PU learning based system
for potential malicious url detection. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2599–
2601.

A APPENDIX
To help researchers reproduce all the results presented in the
paper, wemake all artifacts of our paper publicly accessible at
https://github.com/zhuangshuying18/discover_obscure_LG.
The artifacts include:

• Source Code: The source code to generate similarity-
guided search terms and search for candidate URLs
(crawling procedure), the source code to train the two-
step classifier and obtain relevant URLs (classification
procedure), and the source code to retrieve automat-
able LG VPs and automatically collect AS paths from
the automatable VPs (practical applications) are all
publicly available.
• Original Data: Reproducing the full experiments needs
to take a very long time, especially the procedure to
search for candidate URLs and the procedure to down-
load html files of pre-filtered URLs. So we make our
candidate URLs (from all iterations) and the down-
loaded html files publicly available. Then reproducers
can save the time to do these two tasks and use our
datasets directly. Furthermore, using our datasets, re-
producers can avoid the influence of Internet dynam-
ics.
• Trained Model: We publish our trained two-step clas-
sifier to eliminate the influence of the inherent ran-
domness in the PU-bagging method on reproducing
results.
• Analysis Results: We publish the analysis results used
to fill in the tables and plot the figures in the paper.

https://github.com/zhuangshuying18/discover_obscure_LG


Discovering Obscure Looking Glass Sites on the Web to Facilitate Internet Measurement Research

Some of the artifacts are in fact tools. The two-step clas-
sifier is a classification tool for classifying URLs into LG-
relevant or not. The source code to retrieve automatable
VPs is an automation tool for automating the use of LG VPs.

The script to collect AS paths from the automatable VPs is a
measurement tool for collecting BGP entries.
We also publish the list of 1,446 known automatable VPs

and 910 obscure automatable VPs, which is the final output
of our research.


	Abstract
	1 Introduction
	2 LG Focused Crawler Design
	2.1 Design goals and challenges
	2.2 Overview
	2.3 Crawling procedure design
	2.4 Classification procedure design

	3 Experimental and evaluation results
	3.1 Effectiveness of the similarity-guided search
	3.2 Effectiveness of the two-step classifier

	4 Practical Applications
	4.1 Retrieving automatable LG VPs
	4.2 Analysis and applications of the automatable VPs

	5 Ethical Considerations
	6 Related Work
	7 Conclusion
	References
	A Appendix

