Scheduling Massive Camera Streams to Optimize
Large-scale Live Video Analytics

Chenghao Rong, Jessie Hui Wang™, Juncai Liu, Jilong Wang, Fenghua Li, and Xiaolei Huang

Abstract—In smart cities, more and more government depart-
ments will make use of live analytics of videos from surveillance
cameras in their tasks, such as vehicle traffic monitoring and
criminal detection. Obviously, it is costly for each individual
department to deploy its own infrastructure, i.e., cameras and
analytics system. In this paper, we consider a scenario in
which a city deploys an infrastructure and departments submit
requests to access and analyze videos for their own purposes.
The live analytics of massive streams is computation-intensive
and the tasks might be latency-critical, which makes scheduling
massive streams to optimize all tasks an essential and challenging
work. We exploit an end-edge-cloud architecture and propose
an adaptive system to schedule the massive camera streams
and tasks, which considers all factors affecting the computation
and networking resource consumption, e.g., sharing of model
computation, video quality, model partition, and task place-
ment. Particularly, the resource consumption of Faster R-CNN
+ ResNet101 under each partition scheme is profiled for the first
time and we notice the partition must be used together with
lossless compression techniques to be beneficial. Furthermore,
sometimes tasks might be required to migrate because the
scheduling decision made by the system changes to adapt to
the changing resource supply and demand. In order to avoid the
performance degradation during migration, we propose a non-
destructive migration scheme and implement it in the system.
Simulations demonstrate our system achieves a total utility close
to the maximum and our analytics system performs better than
state-of-the-art solutions.

I. INTRODUCTION

Surveillance cameras are being more and more widely
deployed. It is reported that nearly 1 billion cameras have
been installed worldwide, and there has been one camera for
every 4.1 people in China [1]. These cameras continuously
produce videos that are potentially informative for many
government departments and economic entities. Hopefully, in
future smart cities, one city can deploy cameras in public areas
and establish computation facilities to analyze these videos.
Then departments and entities do not need to deploy their
own infrastructures, and they can just submit their requests to
access and analyze the videos from their interested cameras
for their purposes, e.g., traffic control, AMBER Alerts, and
smart retailing.

Let us define a request to access and analyze a video
stream from a single camera for a particular purpose as a
video analytics task. Obviously, a single camera stream can be
used for multiple tasks simultaneously, and there are massive
camera streams. The tasks may have different performance
requirements. For example, some tasks can be latency-critical,
and some tasks prefer higher accuracy to shorter latency.

Jessie Hui Wang is the corresponding author (jessiewang @tsinghua.edu.cn).

The live analytics of a stream requires intensive computation
resources that cheap cameras widely deployed in smart city
usually do not have. A cloud may have sufficient computation
resources, but transmitting video streams to the cloud intro-
duces extra end-to-end delays. Nowadays, camera-edge-cloud
architecture has been regarded as the only feasible approach
for massive video stream analytics [2]-[5]. In the camera-
edge-cloud architecture, people deploy edge nodes and also
deploy a cloud with more abundant computation resources
than each edge node. An edge node is responsible for multiple
nearby cameras. Intuitively, latency-critical tasks can be placed
on edge nodes nearby the corresponding camera to enjoy
shorter transmission delay, and accuracy-sensitive tasks can
be placed in the cloud to enjoy more computation resources
for higher accuracy.

However, large-scale live analytics of video streams from
massive cameras in the camera-edge-cloud architecture faces
many difficulties. Considering the massive camera streams
and tasks, the available computation resource of edge nodes
and the wide-area networking resource from each edge node
to the cloud are likely to be insufficient. Meanwhile, the
system’s environment is dynamic. The wide-area network
bandwidth between an edge node and the cloud is highly
variable [6], and users may submit or terminate tasks during
the video analytics system running. Obviously, as the resource
supply and demand changes, the optimal scheduling decision
should change accordingly. In order to optimize the analytics
performance, we have to design an adaptive system to schedule
these camera streams and tasks carefully to use the resources
efficiently, which is the problem to be solved in this paper.

There have been some works on making proper decisions
to optimize video analytics performance, but most of them
do not exploit end-edge-cloud architecture because they only
consider a single stream or multiple streams with a single
performance metrics and then an end-edge architecture or end-
cloud architecture has been sufficient to satisfy their needs
[6]-[16]. In a scenario with massive streams and a lot of
tasks with diverse performance requirements, an end-edge-
cloud architecture is a necessity, and it results in a more
complicated objective function, more scheduling dimensions,
and more resource constraints.

In a large-scale video analytics system, available resources
are shared by all camera streams and tasks. The first problem
in achieving optimal performance is to avoid redundant com-
putation and data transmission to make sure resources are used
efficiently. As mentioned above, there can be multiple tasks
associated with the same camera stream. It is possible for these

tasks to share the model computation since the state-of-the-art
DNN can detect multiple types of objects at the same time.
In this paper, we design the system framework in a way that
enables sharing of model computation as much as possible, in
which a stream can have two pipelines, one for a small model
(e.g., Faster R-CNN + ResNet50 [17]) on an edge node, and
one for a big model (e.g., Faster R-CNN + ResNetI0l) in
the cloud. Tasks associated with the same camera stream and
placed on the same place can share model computation.

The second problem is to find the optimal decisions accord-
ing to the tasks’ performance preferences and available re-
sources. In this work, we try to consider all available decision
dimensions that have influence on the resource consumption
and performance achievement of tasks. Besides video quality
(frame rate and resolution), object detection model and task
placement (edge or cloud), we pay special attention to Deep
Neural Networks (DNN) partition schemes. DNN Partition
was proposed to trade a small amount of edge computation
resource for wide-area networking resource, but whether a
model should be partitioned and where to partition should
be carefully answered. Previous works [18], [19] conducted
DNN partition profiling only for small models with dozens of
layers, such as AlexNet, perhaps because their goals are to
help mobile devices which can only handle small models. In
our scenario, the cloud has sufficient computation resource to
exploit complex models to achieve better accuracy. Therefore,
we conduct DNN partition profiling for a complex model
Faster R-CNN + ResNetl101, which is one of the state-of-the-
art object detection model. We find that the profiling result
of this complex model is different from small models, and
compressing feature maps is necessary to make the partition
of this complex model useful.

The third problem is to ensure the performance of tasks
during migration. The system environment is dynamic, which
means the scheduling decision can change anytime. Once the
scheduling decision changes, some tasks might be required
to migrate from cloud to edge or vice versa. A simple
“stop-and-start” migration scheme would cause performance
degradation of the migrated tasks, and we have not seen
any research work on non-destructive migration solutions. In
this work, we comprehensively analyze the possible reasons
for performance degradation during migration, and design a
non-destructive migration scheme. Our migration scheme can
minimize the negative influences of migrations by warming up
the migrated tasks in the destination place as much as possible
and minimizing the amount of data which is transmitted from
the source place.

In summary, we make the following contributions in this
work.

e We conduct DNN partition profiling for a complex state-
of-the-art object detection model, i.e., Faster R-CNN +
ResNet101, and report important observations which have
never been reported before. For this model, we must
compress in-layer feature maps to make its DNN partition
useful for system efficiency improvement.

o We formulate and solve the scheduling decision problem
to maximize the total utility of tasks with diverse per-
formance requirements for a video analytics system in a
smart-city scenario, in which the deployed infrastructure
is with limited computation resources and varying band-
width between edge nodes and the cloud. Evaluations
demonstrate that our system achieves a total utility close
to the maximum and our system performs better than
state-of-the-art solutions.

o We comprehensively analyze the possible reasons for
performance degradation during migration, and design
a non-destructive migration scheme to avoid the perfor-
mance degradation of tasks. Evaluations demonstrate that
our migration scheme enables a near-seamless migration
without perceptible impact on system computation load
and task latency.

We implement a system which incorporates all the above
considerations and mechanisms, and make the source code
publicly accessible [20]. The remainder of this paper is
organized as follows. In Section II, we review the related
work. In Section III, we discuss the system architecture and
the specifications of video analytics pipeline. In Section IV,
we report our works and observations on the profiling of
Faster R-CNN + ResNetl01. In Section V, we formulate the
scheduling problem, and a heuristic algorithm is proposed to
solve the optimization problem. In Section VI, we propose
a non-destructive migration scheme to avoid the performance
degradation of the migrated tasks. We evaluate our proposed
system in Section VII. Section VIII concludes the paper.

II. RELATED WORK

Profiling for DNN Partition. DNN partition profiling must
be conducted in advance before DNN partition is used for re-
source scheduling. During profiling, the resource consumption
under different partition schemes of the model under study
is measured. Previous works such as [18], [19], [21]-[23]
conducted DNN partition profiling only for small models with
dozens of layers, such as AlexNet, VGG, and YOLOV2. In this
work, we conduct profiling for Faster R-CNN + ResNet101,
which is never profiled in previous works. Some important
observations that are different from the profiling results of
small models are reported.

Video Analytics System. There have been many works on
optimizing the performance of analyzing a single video stream
[7]1-110], [24]-[32]. Their solutions cannot solve the problem
in our scenario because resource contention among massive
video streams is not considered.

Some works focused on multiple-stream scenarios and
considered the resource contention among streams, but they
scheduled only one type of resources, either computation or
communication [6], [11]-[15], [33]-[36]. In [11]-[14], [33],
[34], they assumed that all cameras are close to the server
(cluster) that conducts analytics, and they had sufficient net-
working bandwidth to transmit camera streams to the server, so
they only considered the allocation of computation resources.
In [35], [36], they proposed a framework in which edge

nodes extract Rols (region of interests) in frames and these
Rols instead of the original frames are sent to the cloud
for accurate analytics. They just tried to reduce networking
resource consumption but did not consider the competition on
networking resources among streams, so they only considered
computation resources when making scheduling decisions. In
[6], [15], videos were sent to the cloud over the Internet,
therefore networking resources should be considered during
scheduling. They only used the cloud to conduct analytics
directly, so they assumed that computation resources are
sufficient. In our scenario, multiple cameras compete for the
computation resources on an edge node, and videos are sent
to the cloud over the Internet, so both computation and
networking resources should be bottlenecks.

The most recent works have noticed that both computation
and networking resources can be bottlenecks, but they have
different design goals [5], [21], [37]. We are optimizing the
total utility of tasks with diverse performance requirements.
In [37], the authors focused on a market issue, i.e., solve
the conflicts between edge operators and cloud operators and
maximized the social welfare. [21] aimed to minimize latency
for tasks. The authors of [S] aimed to optimize the accuracy
of tasks.

In [38], the authors provided a solution for a similar scenario
using a framework different from us. It includes multiple
candidate analytics models and aims to optimize the total QoS
(quality of service) of all tasks by making optimal decisions
on model selection and placement for each task. In our work,
only Faster R-CNN + ResNet is provided. Faster R-CNN
+ ResNet has been the most widely used model in object
detection [12], [32], and using the same model is beneficial to
achieve more efficient resource usage. Meanwhile, we also use
DNN partition to reduce network bandwidth demands, which
can help to solve the challenge of scarce networking resource
between edge nodes and a cloud.

Migration of Video Analytics Task. None of these live
video analytics systems proposed solutions to mitigate the
performance degradation of analytics tasks during migrations
caused by scheduling decision changes. Virtual machine (VM)
migration (or container migration) in datacenter networks
have been studied by a lot of researchers such as pre-copy
[39], post-copy [40], and hybrid-copy [41]. However, these
research works cannot be directly applied to our problem. The
downtime of these migration techniques might be too long in
our scenario because the available networking bandwidth in
data centers is usually much larger than the WAN bandwidth
between an edge node and the cloud in our scenario. Fur-
thermore, these migration techniques have not been optimized
based on the characteristics of the video analytics tasks so
that the amount of data to be transmitted during migrations is
huge, which causes an excessive latency of a migrated task.

III. OVERVIEW OF SYSTEM

In the section, we introduce the problem scenario, the
concept of video analytics pipeline, and the framework of our
system.

A. Problem Scenario and Concept of Video Analytics Pipeline

The system works in a camera-edge-cloud architecture
which is composed of cameras, edge nodes, and a cloud. Each
edge node can serve multiple cameras and it can communicate
with the cloud to send video streams to the cloud for analytics.
A single camera stream can be used for multiple tasks simul-
taneously for their own purposes. Available computation and
networking resources are shared by all tasks associated with
camera streams. We have to schedule these camera streams and
tasks carefully to optimize the analytics system performance.

A typical video analytics task contains many components.
Figure 1 shows an example of a single camera stream, and
the video stream of this camera is used by several tasks, i.e.,
pedestrian violation detection, car counter, and auto-driving
assistance service. These tasks may focus on different types
of objects, say pedestrians, cars, or trucks. The object detection
is computation-intensive. Fortunately, the state-of-the-art DNN
can detect multiple types of objects at the same time, therefore
it is possible for these tasks to share the results of object
detection and retrieve their interested objects from the results.
In other words, we do not need to run an instance of the object
detection model for each task.

However, the tasks associated with a single camera stream
may have different performance requirements that cannot be
satisfied by a single model instance. Taking Figure 1 as an
example, the auto-driving assistance service (for non-critical
purposes) is more sensitive to latency, while the pedestrian
violation detection prefers a better accuracy. In case that the
resource allows, the auto-driving service may prefer to see the
object detection model being placed on the edge node which
is close to the camera, while the pedestrian violation detection
would like to see the object detection model being placed in
the cloud which can achieve high accuracy.

We define the workflow of the model instance to analyze
a camera stream as a video analytics pipeline. The camera
stream shown in Figure 1 has two pipelines. One pipeline is
deployed for the tasks that consider latency as more important
than accuracy. It runs a small object detection model (e.g.,
Faster R-CNN + ResNet50) on an edge node, and thus it
is referred to as edge pipeline. Small models incur smaller
latency and demand less computation resources than big
models, which makes them more suitable for edge nodes. The
other pipeline is deployed for the tasks that prefer accuracy.
It is deployed in the cloud and uses big models (e.g., Faster
R-CNN + ResNet101), thus we refer to it as cloud pipeline. In
case that DNN partition technique is used, some earlier layers
of the big model of a cloud pipeline can be executed by edge
nodes.

B. System Framework

The framework of our system is shown in Figure 2. Our sys-
tem consists of a centralized system manager and distributed
machine managers.

The system manager is located in the cloud and it is
responsible for making scheduling decisions, i.e., allocating
available resources to streams. There are three key modules:

(car, box, score)

Feature
1080p, 30FPS

Resizing &
Sampling

Map
Partial Cloud Partial Cloud
Model Model

720p, 15FPS
Edge Model

Sampling

(truck, box, score)

(pedestrian, box, score)

Car Tracking H Car Counter]

Cloud pipeline

Pedestrian
Violation Detection

Pedestrian
Trackin,

Edge pipeline

Auto-driving]
Assistance Service

Trucking
Tracking

Fig. 1. An example to illustrate a single camera stream.

System Manager
haso s 55 otz o
108051 308 09 50602 22780
A . - R Network
Offline Profiler X
Monitor
Tasks
°_0
sSa ——'{ Global Scheduler ‘
Users IS
___________ ,-‘/—‘____________
Edge — Cloud
Machine Manager Machine Manager
Pipeline Migration Pipeline Migration
Enforcer Agent Enforcer Agent
Worker Worker Worker Worker
Edge Cloud Cloud Cloud
Pipeline 1 Pipeline 2 Pipeline 1 Pipeline 2
4 - 1=
===
I’ I? Controlflow: ——
Stream1 == -=»
Camera 1 Camera 2 Data flow: 54;04m 5

Fig. 2. The framework of our system.

Offline Profiler, Network Monitor, and Global Scheduler.
The offline profiler is used to learn task performance and
resource consumption under various configurations (such as
video quality, object detection model, and partition scheme)
in each edge node and the cloud. The network monitor is
responsible for periodically monitoring network bandwidth
from each edge node and the cloud. Users submit video
analytics tasks with various utility functions (performance
preferences) to the global scheduler. The global scheduler is
responsible for making the optimal scheduling decisions to
maximize the total utility of all tasks according to the profiling
results, the result of the network monitor and utility functions.
Then, the scheduler distributes its scheduling decision to the
machine managers of edge nodes and cloud. In case that the
global scheduler decides that a task should be migrated, it is
also responsible for sending a migration request to the machine
manager of each involved party.

Each edge node and the cloud has its own machine manager,
which consists of two modules. Pipeline Enforcer is respon-
sible for enforcing scheduling decisions made by the global
scheduler, such as tuning parameters, starting new pipelines
and stopping unneeded pipelines. Each pipeline is executed
in a pre-built docker container to ensure the security and iso-

lation. Migration Agent is responsible for the communication
between the source node and the destination node during a
migration to complete task migrations (more in Section VI).

C. Describing Scheduling Decisions

A scheduling decision made by the global scheduler should
be distributed to all machine managers, therefore we should
develop a way to describe a scheduling decision to make
sure that machine managers can understand the scheduling
decision.

Figure 3 shows the key part of a file that describes an edge
pipeline. The camera_id specifies which camera stream this
pipeline is associated with. The name is used to identify this
pipeline. The task_id field specifies which tasks are using
this pipeline.

The components field contains the information about all
components within this pipeline. Each component is tagged
with an id for identification. The name field describes the
function of the component. The input_component_id
field specifies the component who sends data stream to
this component. Generally said, a “decoder” component is
usually the source component of a pipeline, so it has no
input_component_id.

A args field specifies the key parameters of the component
at run-time, and its composition varies from component to
component. There are three fields that are essential for de-
scribing a scheduling decision. output_resolution and
output_framerate of a “decoder” component specify
the video quality configuration of this pipeline selected by
the global scheduler. partition of a “object detection”
component specifies the partition scheme of this pipeline, in
which “null” means the model is not partitioned.

IV. DNN PARTITION PROFILING FOR FASTER R-CNN +
RESNET101

DNN partition has been proposed in some works, e.g. [18],
[19], to achieve their particular performance goals, e.g. latency
minimization or energy conservation. With DNN partition,
a DNN model can be split into two parts, running on two
different locations, e.g., one on an edge node, and the other
in the cloud. The feature map of each frame output by the
last layer of the head part, instead of the original frame, needs

"camera_id": 0,

"name": "edge_pipeline",

“task_id": [0, 1],

"components": [
": "decoder",

"'camera_ip": "203.91.121.212",
"port": 5000,
"output_resolution™: "1080p",
"output_framerate": 10 } },

"name": "object detection",

"id": 1,

"input_component_id": 0,

"args": {
"memory": 0.1,
"model_path": "edge/frozen_inference_graph.pb",
"label_path": "edge/label_map.pbtxt",
"partition": "null" } },

-~

{"name": "object tracking",
"id': 2,
"input_component_id": 1,
"args": {

"threshold": 0.1,

"object_class": "car" } },
{"name": “"object tracking",
id": 3,
"input_component_id": 1,
"args": {

"threshold": 0.1,
"object_class": "pedestrians" } },

Fig. 3. An example of describing a video analytics pipeline.

to be transmitted to the tail part to complete the inference
task, which consumes the networking resource between the
two places.

Obviously, the partition scheme (i.e., where to split the
model) determines the amount of resources that the DNN
model needs to consume, including the computation resource
on each of the two places and the networking resource between
the two places. When using DNN partition, we have to
measure the computation and networking demand of a DNN
model with different partition schemes. In this section, we
will conduct DNN partition profiling for Faster R-CNN +
ResNet101, which is never profiled in previous works. The
other difference is that we need to profile one more element,
the GPU utilization, besides the two elements profiled by
previous works, latency and the data size. In our scenario,
a lot of model instances are competing for the computation
resource of edge nodes and the cloud, therefore we have to
know the computation demand of each model in terms of
GPU utilization rate. In previous works, there is no resource
competition because they only consider a single task, so they
only need to profile the inference time and data size (which
also affects latency).

A. The Structure and Partition Schemes

Figure 4 shows the structure of Faster R-CNN + ResNetl01.
In the model, the Faster R-CNN part includes a Region
Proposal Network (RPN) and a Classification Network, and the
ResNet101 part consists of 5 components, namely from Conv/
to Conv5, and there are 33 blocks in these components. There
are 3 units in each block, and each unit contains three layers,
i.e., a convolution layer, a batch normalization layer, and an
activation layer. Each block is designed to be with a branchy
structure, i.e., there is a shortcut connection connecting two
adjacent blocks [42].

shortcut connection

Conv1 (3 layers, a = 3)

Maxpooling (a = 1)
°

Conv2 (3 blocks, @ = 43)
Conv3 (4 blocks, a = 52)

| Conv3, Con.volu!lon (c1)

Unit 1 1Batch Normalization (b1)
1 °

Activation (a1)
Ll

Convolution (c2)
[]

Conv4 (23 blocks, a = 223)

Unit 2 gatch Normalization (b2)
' o,

Region Proposal Network (a = 1)

°
Convs (3 blocks, @ = 43)

Average pooling (a = 1)
o

Classification Network

Convolution (c3)
L)

Unit 3 !Batch Normalization (b3)
H ®

--ishortcut connection
,,,,,,,,,,,,,,,,, T

...... l

Fig. 4. The structure of Faster R-CNN + ResNeti0l. The colored dots
represent cut points.

Conv1Conv2 Conv3 Conv4 RPN Conv5 AvgPool

@
=

T
—— Video frame |
—— Feature maps i
1
]

Data Size/Mb
B (o)}
o o

N
o

o

0 50 100 150 200 250 300 350
Partition schemes

Fig. 5. Partition profiling results of Faster R-CNN + ResNet101 (1920x1080).

Potentially, the model can be split between any two neigh-
boring layers, and a scheme may result in one cut point or
two cut points (when splitting the model in a place with a
shortcut connection). Taking the first block of Conv3 (denoted
by Conv3;) shown in the second subplot of Figure 4 as an ex-
ample. It has 9 layers in its backbone connection and 2 layers
in its shortcut connection. In total, there are 8 x 2 +1 = 17
partition schemes in this block.

Let « denote the number of potential partition schemes. We
show a for each component in Figure 4. Besides splitting the
model within five components, we also consider the partition
schemes that split the model after the max pooling layer, the
average pooling layer, and the RPN. In total, we conduct
measurements for 367 partition schemes.

For convenience, we use the name of the last layer of the
head part to represent the partition scheme. The layer name is
shortened as the second subplot of Figure 4 indicates, e.g., cO
means the convolution layer of shortcut connection.

B. Fartition Profiling of Faster R-CNN + ResNet101

A partition scheme is usable only when it incurs less
networking demand than the original video stream. Therefore,
we first focus on the data size of a transmitted feature map
under various partition schemes. The profiling results for
images with a resolution of 1920x1080 is plotted in Figure
5. Surprisingly, we have the following observation from the
results.

Observation: The in-layer feature map that is needed to be
transmitted across the wide-area network is much larger than
the original frame under almost all partition schemes.

The only exception is the average pooling layer (the last
partition scheme in Figure 5), which is almost at the end of

IS

Data Size/Mb
N

o

SIS

N>

<
NG

) N))
o IR ARNORNO
N\

Q:b QY

P PO P PP PP P?
& ¢

CIRAC AR K S
TECEEE T E S

Partition schemes in the block Conv3;

Fig. 6. The data size of compressed feature maps in the block Conv3y

the model. However, if we split the model after this layer,
the processing time of the head part in cloud is 61.52ms,
accounting for 94.50% of the total processing time. It means
this partition scheme significantly increases the computation
overhead of edge nodes. The results for other resolutions are
skipped as they are similar to Figure 5.

We look into the previous works and find that their selected
partition scheme is also at the end part of model, such as pool5
in AlexNet [18]. But fc6 (the next layer of pool5) consumes
more than 30% of the total computation resource consumption.
Therefore, offloading a very small number of layers to the
cloud can help a lot in their scenarios, while it is not true for
the Faster R-CNN+ResNetl0].

Fortunately, our edge servers are much more powerful than
mobile devices. Compressing and decompressing feature maps
on edge servers and the cloud would only consume negligible
computation resource and induce negligible latency compared
to the DNN inference task. Therefore, we conduct more
measurements to see if compressing feature maps to reduce
the size of feature maps can give us usable partition schemes.

C. Profiling of Partition + Compression

1) Compression Method: The compression of feature maps
must be lossless to maintain the accuracy of object detection.
A feature map is consist of 32-bit floating-point numbers. The
lossless compression algorithms for floating-point numbers
usually provide 1.5x-4x data reduction [43], [44], which
cannot meet our requirements. The lossless compression of in-
tegers usually performs much better, therefore we first convert
32-bits floating-point feature maps to 8-bits quantized feature
maps using the method in [45]. Recent studies have demon-
strated that the uniform 8-bits quantization has a negligible
effect on the accuracy of object detection [45].

Now we can compress quantized feature maps using lossless
compression methods for integers. A quantized feature map
includes many channels, and each channel is a 2D integer
matrix. We tile the channels to convert the 3D matrix into a
giant 2D matrix, then use the PNG to compress the 2D matrix.

2) Profiling Results of Partition + Compression: Now we
take a look at the data size of a feature map after compression.
Figure 6 show the data size for the partition schemes within
the block Conv3i. We can see that the last partition scheme,
which is to split the model after the last layer of the block (the
only partition scheme with a single cut point) produces the
smallest bandwidth demand after compression. Other blocks
have the same observation.

L Video frame 80 Inference time (edge)
4 .
B Feature map after compression \nferenF.e time (cloud) —_
— 601 GPU utilization (edge) X
§ 3 —_ GPU utilization (cloud) c
< [<}
[} £ =1
N ~ 404 o ©
@2 5 = =
e E S £
2 = — >
(s} 20 / >
\ a
\\
LUl

1 4 710131619 222528 31 34
Partition schemes

14 7101316192225283134
Partition schemes

Fig. 7. The profiling results of DNN partition with compression when the
video quality is 1080p, 15fps.

We notice that the above observation is not true before
compression. [19] shows that the partition schemes with two
cut points can produce the smaller data size in some models,
e.g., AlexNet, Googlenet. We conduct more measurements and
find that the feature maps after activation layers have more
zeros and are more concentrated, which help the last partition
scheme achieve the smallest data size after compression.

Furthermore, we find that a single block only consumes a
small proportion (about 0.7% — 6%) of the total computation
resource demanded by the whole model. It means the partition
schemes within one block result in comparable computation
overhead and the last scheme among them produces smallest
networking demand. Therefore, for each of the 33 block, we
only select the last partition scheme as a candidate. Together
with the schemes after maxpooling layer, after RPN and after
average pooling layer, we select 36 schemes to profile.

The profiling results for videos with a configuration 1080p,
15fps are plotted in Figure 7. We can see that compressing
feature maps makes some partition schemes consuming less
networking resource than an original frame with H.264 en-
coder, and allows DNN partition to be used. The profiling
should be done for each video quality configuration. We find
that there is no usable schemes for some video qualities even
after compression. For example, under the video quality of
(360p, 15fps), all partition schemes have a larger networking
resource demand than the video encoded using h.264 (about
7.84Mbps). The schemes that have larger demand size than
the video encoded using h.264 are filtered and will not be
considered during scheduling.

Due to page limitation, we only introduce our work on DNN
partition profiling and skip the details on task profiling and
model profiling.

V. SCHEDULING VIDEO STREAMS FOR MASSIVE TASKS

In this section, we analyze the problem of scheduling video
streams for massive tasks and propose a feasible solution for
the problem. We start from analyzing the scheduling problem
of a single video stream to get some insight for the complex
scheduling problem of multiple video streams.

A. Analyzing a Single Camera Stream

As mentioned above, a video stream can serve multiple tasks
with different performance requirements. We would like to
see these tasks can share model computation, i.e., using the

same pipeline. But whether multiple tasks agree to share the
same model instance and where to place the model instance
depend on a lot of factors, such as the available networking
resource, the computation resource supply on edge nodes and
the cloud, the performance requirements of tasks, and the
accuracy-latency-demand profiling of various object types.

Let us summarize all possible scheduling plans for a camera
stream and calculate the total utility of all tasks associated with
this stream under each possible scheduling plan. There are the
following decision variables for the scheduling problem of a
single stream.

« For the edge pipeline, we can make decision on its frame
rate and its frame resolution.

« For the cloud pipeline, we can make decision on its frame
rate, its frame resolution and the partition scheme of the
model instance.

o For each task associated with this camera, we can make
decision on which pipeline it uses.

Therefore, theoretically, the number of the combina-
tions of the above decision variables is [frame rate|® x
|frame resolution|? x |partition scheme| x 2%, where KC; is the
number of tasks associated with the camera ¢, and |frame rate|
represents the number of frame rates that can be selected with
available resources, and so on. We would like to emphasize
that it is unnecessary to deploy two pipelines for a single
stream on the same location (edge node or cloud). For any
type of objects, the performance of the detection model always
increases with the video quality. Therefore, a single pipeline
with the best video quality allowed by the available resources
has been enough for all tasks deployed on the same location.

In our system, we implement frame queues to temporarily
store frames that are not analyzed in time. To ensure there are
no ever-increasing frame queue, the inference latency must be
less than the interval between two consecutive frames, i.e., the
reciprocal of the selected frame rate. Let G; denote the set of
possible scheduling plans for the stream of the camera i. We
must ensure the following conditions hold for each element

Gi; in G,

Vi li(Gij) < 1/gi{j
Vi li(Gig) < 1/67,
Vi li(Gig) < 1/67,

Here, Qif’ ; and ggf ; are the frame rate of the edge pipeline
and the cloud pipeline respectively in the scheduling plan
Gi.js I; is the inference latency of the edge pipeline, [; is the
inference latency of the earlier part of the detection model on
the edge node (it can be zero when the whole model is in the
cloud), and Zi is the inference latency of the later part of the
detection model in the cloud. 1;(G; ;), [;(Gs ;) and ;(G; ;) are
given by the profiling results of the detection model on the
same GPU type as the edge node and the cloud.

Let us assume we have N feasible scheduling plans for the
camera stream ¢ after removing the combinations of decision

variables that cannot satisfy the above conditions. The total
utility of all tasks associated with the camera stream ¢ under
Gij(j € [1,Ni]), denoted by U; ;, can be calculated as follows.

Ki
Uiy = ui(aF(Giy), 15 (Giy)) (D
k=1

Here, u} is specified by the kth task associated with the
ith camera. Roughly speaking, it should be a function of the
latency and accuracy the task can achieve, i.e., a¥ and IF,
which are the results yielded by the selected scheduling plan
G, ;. Please note the functions a¥(G; ;) and I¥(G; ;) are learned
by the profiling of the task under various scheduling plans.

B. Scheduling Multiple Video Streams

Now let us consider n cameras in the system. Assume there
are m edge nodes in the system, denoted by S = (s1, ..., $m)-
Each camera i € [1,n] is connected to its corresponding edge
node s(7), and an edge node is providing services for multiple
cameras.

The objective is to maximize the total utility of all tasks
associated with these n cameras by selecting proper scheduling
plans for every camera stream % from its set of possible
scheduling plans G;. Mathematically, we are trying to deter-
mine z; ; (j € [1,N;]) for every i, that satisfies the following
conditions,

n N
max Y > Uiy i, &

i=1 j=1
Vi) =1, (3)
J

xi,j € {Oa 1}7 (4)

Here, x; ; = 1 means that G; ; is selected for the camera
i, and U; ; is the total utility of tasks associated with the
camera ¢ given that G; ; is selected. Equation 3 ensures that
one scheduling plan is selected for one camera. Equation 2 is
the objective function of our scheduling problem.

The optimization problem should be solved subject to some
feasibility conditions. In terms of the computation resource on
edge nodes and the cloud, we should have

n N;
ZZW(QL‘,J‘) T

< RO
i=1 j
N;

Ve Y Y dilGig) wiy; < Di, (6)
{i|s(i)=t} J

Here, R is the total amount of available computation resource
in the cloud, and r;(G; ;) is the amount of cloud computation
resource demanded by the camera 7 under G; ;. D, is the total
amount of available computation resource on the edge node
s¢, and d;(G; ;) is the amount of edge computation resource
demanded by the camera i under G; ;. r;(G; ;) and d;(G; ;)
are given by the profiling results for the detection model.

In terms of the networking resource, we should have

Ni
Vit Z Zbi(gi,j) iy < By, (7)
{ils(d)=t} J
Here, B, be the bottleneck bandwidth of the path from s; to
the cloud, and bi(gm-) is the amount of networking resource
demanded by the camera i, given by the profiling results for
the detection model.
The problem formulated in this subsection (from Equation
2 to Equation 7) can be mapped to the multiple-choice multi-
dimensional knapsack problem (MMKP). In [46], the authors
proposed an approximation algorithm with a complexity of
O((>°;, Ni)?™*1). Obviously, the algorithm cannot be used
to solve this problem due to the large value of n, A;, (2m +
1). The scheduling decision must be made in a nearly real-
time manner when the system status changes, so a heuristic
algorithm must be designed to solve the problem quickly.

C. Heuristic Algorithm

1) Reducing the Number of Candidate Scheduling Plans: A
scheduling plan G; ; is said to be Pareto Optimal [47] if there
exists no other scheduling plan G; j, that can achieve better
utility without increasing any kind of resource. Obviously,
we are only interested in Pareto optimal plans because other
scheduling plans would never be selected as the best solution
for the camera i. Therefore, we can remove the plans that
are not Pareto optimal, which can help us reduce the search
space of the optimization problem. Mathematically, each G; j,
is removed if it satisfies the following condition,

34, such that U ; > U; o,

di(Gs,j) < di(Gi 1),

r:(Gi;) < 1i(Gi 1),
bi(Gi,;) < bi(Gijir)-

We do not define new notations for the set of scheduling
plans after filtering. From now on, G; denotes the set of Pareto
optimal scheduling plans of the camera 7 instead of all possible
scheduling plans.

2) Heuristics to Evaluate Plans: After Pareto optimal
filtering, we need to find the optimal scheduling solution.
Generally speaking, a heuristic algorithm searches for the
optimal solution by replacing current solution with a better
solution iteratively until no better solution can be found. Given
a particular search point (i.e. a temporary scheduling decision),
we can try to find the current best scheduling plan G; ;- for
each individual camera stream . Among all camera streams,
we can select one stream (say ¢*) and update its scheduling
plan to its current best scheduling plan G;« ;~, which results
in a new search point. In this way, we update the search point
iteratively and explore the search space to find the optimal
solution.

But how to find G; ;- for each i and how to determine i*?
Naturally, a good scheduling plan should be able to achieve
a larger utility while consuming less resource. Furthermore,
among multiple kinds of resource, it should be more conser-
vative in using the resource that tends to be in short supply.

Algorithm 1: Deriving the optimal scheduling decision
Input: G;(Vi); R; Di(Vt); B(Vt); €
Output: optimal solution S and its total utility I/

1 S < initialize a feasible solution;

2 U, r,di(V1t), b (Vt) < compute the utility and resource

usages of S;

360=0;

4 while 0 < € and 3i : G; # @ do

5 for i do

6 for j do
7

L compute v(G; ;);
8 let G;- ;- be the scheduling plan with maximum ~ ;
9 remove G;» j« from G«;
10 S* < update S by using G« j;
11 U*,r*, d; (Vt), by (Vt) + compute the current
utility and resource usage of S*;
12 if S* is feasible and U* > U then

13 S,Z/LT’, dt(Vt),bt(Vt) —
S* U* r*, dy (), by (Vt);

14 0 =0;

15 else

16 L0:0+1;

17 return S, U,

From this insight, we define the efficiency of G; ; on using
resources to evaluate the optimality of a scheduling plan.

UZ'A’]‘

prori(Gig) + pi - dilGig) + PF - bi(Gig)

Here, ¢ is the edge node to which the camera ¢ is connected,
i.e., t = s(i). The denominator is the sum of the consumption
of each resource (r;, d; and b;) weighted by the shortage
degree of the resource (p”, p¢ and p?). p" is for the cloud
computation resource, p¢ is for the computation resource of
the edge node ¢ and p? is for the bandwidth resource from the
edge node ¢ to the cloud.

The shortage degree can be evaluated by the utilization rate
of the resource. Taking p? as an example, p? can be calculated
as follows,

’Y(gi,j) =

®)

. > qilstiy=ty bilGi)
t Bt

Here, j(i) denotes the scheduling plan index selected for
the camera 7 currently. p? is the result of the scheduling plans
of all cameras that are connected to edge node ¢ in the system,
which means the current best scheduling plan for a camera
is related to other camera’s current decisions.

Our algorithm to find the optimal scheduling decision is
summarized and described in Algorithm 1. Here, ¢ is a
parameter set by administrators and the algorithm is terminated
if the total utility does not increase in the recent e iterations.
In our experiments, we set € to be 10. Initially, we set the

scheduling plan of each camera stream to be the scheduling
plan with minimum utility. This serves as the start point, which
is denoted by S, and we compute its resource usage and total
utility (lines 1-2). 8 is the number of consecutive iterations that
the total utility does not increase (line 3). Based on Equation
8, we can compute y(G; ;) for each scheduling plan (lines
5-7). Then, the scheduling plan with the highest efficiency,
i.e. Gi- j=, is selected to be tried in the next iteration, and it
is removed from the set of candidate choices. (lines 8-9). If
G;~ ;- is feasible and it improves the total utility, we update
the current solution, and continue the iterations (lines 10-16).
It terminates when there is no candidate scheduling plan to
explore or there is no utility improvement in recent € iterations

Let M, denote the number of pareto optimal scheduling
plans of the camera stream ¢. In each iteration, there are n
cameras, and at most » ., M, scheduling plans are explored.
There are at most Y., M, iterations because each iteration
removes one scheduling plan from the candidate set which
consists of Y. ; M, scheduling plans. Therefore, the time
complexity of Algorithm 1 is O((>;, M;)?). In practice,
Algorithm 1 terminates much earlier than) ;- , M); iterations,
because the resource constraints are hit, or the total utility does
not increase in recent € iterations. We evaluate the running time
of our algorithm in Section VII-F.

VI. NON-DESTRUCTIVE MIGRATION SCHEME

The wide-area network bandwidth between an edge node
and the cloud is highly variable, and users may submit or
terminate tasks during the running of the video analytics sys-
tem. The system needs to keep tracking the status of resource
supply and request demand, and re-evaluate its scheduling
decision once a status change is detected. It is likely that a
task needs to be migrated to the cloud from the edge node (or
vice versa) in the new scheduling decision.

How to migrate a task is an issue that must be handled in any
adaptive scheduling system. However, we have not seen any
research work on the migration issues for live video analytics
systems. A scheduling system that just naively stops the task
in the source node (hereafter called source task) and then starts
the task in the destination node (hereafter called destination
task) can cause the following problems.

1) The frames arriving during a migration cannot be pro-
cessed, which affects the accuracy of the tasks.

2) Some video analytics tasks need to tracking the status
changes of objects, e.g., detecting whether a pedestrian is
running through a red light. In order to analyze a frame
correctly, a task of this kind has to analyze § frames
before this frame and get the feedback information of
these frames from DNN models, e.g., the intermediate
features and the boxes of objects in previous frames.
Therefore, after the destination task is started, the an-
alytics of initial § frames is incorrect because the task
has no feedback information of the frames before them.

3) If the task is stateful, e.g., counting the number of a
specific type of objects, it may lose its states.

To ensure the migrated task’s accuracy, we must transmit the
data required by the destination task from the source task and
process the frames arriving during the migration. However,
transmitting a large amount of data can induce excessive
downtime, which seriously affects the latency of the migrated
task. To avoid the performance degradation of migrated tasks
(accuracy and latency) , we design a non-destructive migration
scheme in our system. Our basic idea is to warm up for the
migrated tasks in the destination node as much as possible
and make sure only necessary data is transmitted from the
source node.

A. Warm up for the migrated task

The first step in the warm-up phase is loading the container
image and initialize the runtime library such as TensorFlow at
the destination node. We name this step as container startup.

The second step in the warm-up phase is starting the
migrated task in the destination node. The migrated task can
have multiple components. The components that can be shared
with a task in the destination node have been running in
the destination node. We need to start other components and
hook these new components and existing components together
according to the new specification of the pipeline. This step
is named as components warm-up.

Now we start receiving the video stream and analyzing
the frames of the stream. The destination task starts to get
feedback information from DNN models for § frames. The
value of § depends on the object tracking method used by
this task. In our implementation, we use deep SORT [48] as
the object tracking method, and the value of § is set to be 15
according to [48], [49]. Again, if the DNN model instance of
the destination pipeline has been running, the system has had
the stream and the feedback information of frames, and we do
not need this step. This step is named as frames warm-up.

During the above three steps, the migrated task is still
running normally in the source node, and the destination node
is getting ready for this task.

Unfortunately, the statistic results (e.g., the number of
vehicles in this hour) cannot be warmed up, and it has to
be transmitted to the destination node from the source node,
which causes an unavoidable downtime period.

B. Procedure of non-destructive migration

Figure 8 shows the procedure of our non-destructive migra-
tion scheme.

The migration agent in the source node, i.e., source agent,
sends a migration request to the destination node (®). When
the destination agent receives the request, it starts the step
container startup and components warm-up (@).

Let n be the ID of the first frame received by the destination
task after the components warm-up step is accomplished
successfully. For simplicity, we assume that both the source
and destination can receive frames from cameras at the same
time. The destination sends a signal with n + § to the source
(®), indicating that the destination is capable to analyzing the
frame n+4 correctly. Meanwhile, the destination task starts the

g (w) &

Source task Destination task
lifeline lifeline
@ migration request
<«—Receive the request

@ Container startup and
components warm-up

Framen _"—’_—(j)_r_l—-_i-_z_i_________« Frame n
Frame n+1—> j¢— Framen+l
______ @ Frames
warm-up
Complete the (® Task statisticresults
analyticsof frames—) = - - - - - o=\ oo ___ le— Framen+46
n+d Downtime

f«— Receive the
statisticresults

@ Stop —»®
source task

(® Migration finish ACK

Fig. 8. An example of a task migration.

procedure of frames warm-up to receive and store the feedback
information of frames (@) .

The source receives this signal. It keeps analyzing frames
normally until the frame n + 6 — 1. After the frame n 49 —1
is analyzed, the source stops analyzing frames and sends its
states information (statistic results) to the destination (®).

After the destination receives the state information, the des-
tination agent pushes the state information into the migrated
task and sends a migration finish ACK to the source (®).
The destination task starts to be responsible for analyzing the
frames after n + § — 1 to accomplish the requirement of the
migrated task.

The source stops the source task until receiving the migra-
tion finish ACK (®©). We can see that the migration downtime
is the duration to send the state information from the source
to the destination.

VII. EXPERIMENT RESULTS

The DNN models and tasks must be profiled on the same
GPU type as the edge node and the cloud of the running
system. Our offline profiling of Faster R-CNN + ResNet50
(small model on edge nodes) and Faster R-CNN + ResNet101
(big model partitioned between edge nodes and the cloud)
is conducted on NVIDIA RTX 2070 Super (edge node) and
NVIDIA RTX 3090 (cloud). The models are pre-trained on the
Kitti dataset [50]. We select 5 levels of frame rate, 5 levels of
resolution, and 5 partition schemes as candidates.

We only consider tasks relevant to the detection of two
object types, i.e., car and pedestrian. A camera stream can be
associated with multiple tasks, and each task values accuracy
and latency differently and thus it has its own utility function
of the achieved accuracy and latency.

A. Experiment Settings

Experiment setup: Each edge node has 40 cores of the
2.2GHz Intel Xeon processor, 32 GB RAM, and a RTX
2070 Super GPU. The cloud has 64 cores of the 2.2GHz
AMD EPYC processor, 64 GB RAM, and a RTX 3090
GPU. There are 2 edge nodes and a single cloud. Each

edge node is responsible for 4 cameras, and all edge nodes
are connected to the only cloud, and they are not changed
across experiments. The bandwidth between an edge node
and the cloud is varied between 25Mbps and 100Mbps to
simulate the dynamic networking environment according to the
experimental measurements in [6]. We use Cgroup to control
the bandwidth between edge node and cloud.

Dataset: We select 8 videos from YouTube as the input
camera streams using the keyword “highway traffic video
HD”. The length of each video stream is one hour, and we
loop the video if the original video length is less than one
hour. The quality of each video is (1080p, 30fps). These videos
do not have human-annotated ground truth, and we have to
use the estimated accuracy from the offline profiling results.
Other key metrics (e.g., latency, GPU usage, and the number
of edge or cloud pipelines) are collected during our real-world
experiments.

Utility function: The utility function of each task is spec-
ified by its user when the user submits the task. We assume
that the user’s utility function is defined as follows.

u(aal) = fpa77'a (a) - fpz,‘rz (l)

0 if z<7
for(@) = {p(x —7) if z>7T

Basically, the performance metrics of an task, i.e, accuracy
and latency, affect the utility only when the corresponding
performance metrics exceeds a specified threshold 7. p is used
to indicate the significance of the corresponding metrics, i.e.,
accuracy (p,) and latency (p;).

Each task has its own parameters p,, p;, 7, and 7. In this
way, we can simulate tasks of various performance consid-
erations. In our evaluation, 7, is between 0.4 and 0.6, 7 is
between 0.1s and 0.4s, and p, and p; are integers between
1 and 10. We generate tasks with random parameters within
these ranges to simulate a random workload for experiments,
and then we gradually change p, and p; to simulate more
accuracy-sensitive tasks and more latency-sensitive tasks.

B. Benchmarks

We compare our solution with the following solutions.

o Optimal: It is the solution to the optimization prob-
lem derived using Gurobi [51], a powerful optimization
solver. It can be used to evaluate the optimality of our
heuristic algorithm and can be viewed as an upper bound.

o VE: VideoEdge [5] also studies a scenario with multiple
cameras, multiple edge nodes and a cloud. It aims to
optimize accuracy of tasks. To make two solutions com-
parable, we modify the optimization goal of VideoEdge
to maximize utility.

e AGP: It is proposed in [38]. The work makes decision
for each task on which model to be used among multiple
candidate models. To make two solutions comparable, we
profile more models (i.e., Yolo and SSD + MobileNet)
under different video qualities.

w
S

—O— Ours

-7~ Optimal

->— VE
Ours-P

v
N

—<+ AGP
—— EGP

/

%651 20 30 40 50 60 ° 12 16 20 24 28 32
time (min) The number of tasks

N
=3

I
o
The number of tasks

H
5
with two pipelines

Average utility
o - N w £ w o

o
©
The number of streams

Fig. 9. The performance comparison under workloads of different intensities.

o EGP: It is an alternative method to the problem proposed
in [38].

e Ours-P: It is a variant of our solution, which does not
allow DNN partition. It can be used to present the benefit
retrieved from DNN partition with compression.

e Ours-S: It is a variant of our solution, which does not
allow sharing of model computation.

C. Performance under Increasing Workloads

We generate 32 tasks, and each task is with a random
parameter setting. During this experiment, we submit 2 tasks
every 5 minutes and gradually increase the number of active
tasks from 8 to 32, which is to simulate the workloads of
different intensities. The networking bandwidth is set to be
50Mbps and kept fixed during the experiment.

The results are presented in Figure 9. We can see that
our solution is always close to the Optimal derived by the
optimization solver, and the performance gap is within 5.6%,
which demonstrates the efficiency of our heuristic algorithm.
Our system performs significantly better than VE, AGP and
EGP. As the workload increases, the average utility of Ours-
S drops sharply while the average utility of other methods
are relatively stable. Since the average utility of Ours-S is
always poor and Ours-S cannot find a feasible solution when
the number of tasks exceeds 22, we do not include Ours-S
for comparison in the experiments in later subsections. It also
shows that the performance of our solution is much better
than Ours-P, which demonstrates that DNN partition with
compression improves the system performance. We also plot
the number of camera streams with both edge pipeline and
cloud pipeline. As the number of tasks increases, there tend
to be more tasks on the same camera and these tasks can
be with competing/diverse performance goals, therefore more
streams have to be analyzed in two places for different tasks.

D. Performance under Different Bandwidths

We set the number of tasks to be 24 and keep their
parameters of utility functions the same as the original val-
ues generated randomly. We increase the network bandwidth
every 5 minutes. The networking bandwidth is changed from
25Mbps to 100Mbp. As shown in Figure 10, we can see that
the performance of Ours is close to Optimal, and outperforms
all other solutions. As the available networking resource in-
creases, more video streams can be transmitted to the cloud for
better accuracy. Therefore, the number of cloud pipelines also

—O— Ours
1.3 - Optimal 6
N - VE
212 Ours-P
§ — AGP
b 11 L0~ Ecp 4
—O- Ours
—7~ Optimal

g10{
@
Z 09
0.8
0.7
25 40 55 70 85
Bandwidth limit (Mbps)

The number of cloud pipelines

2 - VE
ours-P

—+ AGP

0 —)— EGP

25 40 55 70 85 100
Bandwidth limit (Mbps)

=
o
IS

Fig. 10. The performance of different methods under different bandwidth.

—o— Ours
0.35{ —— Optimal
—— VE
Ours-P
—— AGP
—— EGP
--- bandwidth limits
[Ty T

)
0.15 44,

@ 0.30

2 0.25 4
2 2 % 60

L o0.20
©
40

Bandwidth (Mbps)

0.10 s

0 200 400 600 800 1000 1200 1400 1600 180%0
Time (s)

------------ L 100

—o— Ours
—=— Optimal
—— VE
Ours-P
—a— AGP
—— EGP
=== bandwidth limits

@
o

80

=)
=]

)
o
3
Bandwidth (Mbps)

Cloud GPU utilization (%)
N
o

=)

2
1000 1200 1400 1600 1800

0 200 400 600 800
Time (s)

Fig. 11. The latency and cloud GPU utilization under different bandwidth.

increases. We find that the number of cloud pipelines in our
system and Optimal is always more than all other solutions.
This shows that DNN partition can make more videos to be
streamed to the cloud.

Figure 11 shows the latency and the cloud GPU utilization
over time. The system runs for 30 minutes, and we calculate
the average latency and GPU utilization every 10s. The latency
of the tasks increases with the increase of network bandwidth,
because there are more cloud pipelines in the cloud. The
average latency of Ours and Optimal is larger than other
solutions. The reason is that Ours and Optimal place more
accuracy-sensitive pipelines in the cloud than other methods. It
improves the utilities of the associated tasks while the latencies
of these tasks increase.

E. Performance under More Accuracy-Sensitive Workloads

The bandwidth is set to be S0Mbps. We still use the same set
of tasks, and the number of tasks is 24. During this experiment,
pq of all tasks is increased from 1 to 10 while other parameters
remain unchanged. The duration of the experiment is 50
minutes.

Figure 12 shows the results. The utility achieved by our
solution is very close to Optimal, and the gap between them is
within 1%. Both our solution and Ours-P are better than other
solutions. As p, increases, the number of cloud pipelines is
increasing. It indicates that more tasks are placed in the cloud
because accuracy becomes more important for these tasks,

—O— Ours —O— Ours
15 —7— Optimal 6 —7~ Optimal
= = VE > VE
Ours-P Ours-P
— AGP — AGP
1.0{ - EGP 41 ~— Ecp

Average utility

N

The number of cloud pipelines

=]

o
N
£y
o
©
15
o
N
IS
o
©

10

The value of p, The value of p,

Fig. 12. The performance as the tasks are more and more accuracy-sensitive.

=)
=]

—o— Ours
—=— Optimal
—— VE
ours-P
—— AGP
—— EGP
—=— The value of

NSy
o o

N
o
The value of p,

Cloud GPU utilization (%)
= w
o o

o

1000

o
| B
o
St

1500
Time (s)

2000 2500 3000

Fig. 13. The cloud GPU utilization as the tasks are more and more accuracy-
sensitive.

and the cloud pipelines can achieve higher accuracy. DNN
partition can enable more cloud pipelines as it helps to reduce
the networking consumption of a single pipeline. That can also
explain why we see more cloud pipelines in our system than
all other solutions in the second subplot of Figure 12.

Figure 13 shows the cloud GPU utilization. We can see
the cloud GPU utilization is increasing as p, increases. When
the value of p, is big, the cloud GPU utilization under
Ours-P is higher than Ours and Optimal but the number of
cloud pipelines under Ours-P is less than Ours and Optimal.
The reason is that the DNN partition pushes some layers of
big model to the corresponding edge nodes, alleviating the
workload in the cloud.

We also conduct experiments to evaluate the performance
under more latency-sensitive workloads which presents similar
observations. Due to page limitation, we show the experiment
results in the supplemental materials.

F. Performance under Massive Video Streams

We conduct a simulation in a scenario with more video
streams. There are 50 edge nodes and a cloud. Each edge
node has two RTX 2070 Super GPUs and is responsible for
10 cameras. The cloud has eighty RTX 3090 GPUs. The
number of video analytics tasks varies from 500 to 2500 during
experiments. The bandwidth between an edge node and a cloud
is 100Mbps. We evaluate the performance of different methods
under workloads of different intensities.

Figure 14 shows the results. The utility achieved by our
solution is close to the Optimal, and the gap between them is
within 5.1%. The average utility of our system is better than
other methods. Besides, we also show the time for our sched-
uler and Optimal to compute the scheduling solution. As the
number of tasks increases, the time needed by both methods
is increasing, but the time of our scheduler is significantly

~O- Ours mmm Ours
13 i Optimal | 2501 mmm optimal
0
Z12 S| g0
5 —)— EGP]
< 150
L
o 1.1 q\/qhq\q g
©
g S 100
210 £
= s0
0.9 o
500 1000 1500 2000 2500 500 1000 1500 2000 2500

The number of tasks

The number of tasks

Fig. 14. The performance of different methods under massive video streams.

smaller than Optimal. When the number of tasks is 2500, our
global scheduler can compute the optimal scheduling solutions
in 10 seconds, which is acceptable for our video analytics
system.

G. Evaluation of Non-destructive Migration Scheme

1) Time cost of warm-up phase: Our migration scheme
needs to warm up for the migrated tasks in the destination
node, and the time cost of the warm-up phase directly affects
the total migration time. Therefore, we conduct measurements
for the time cost of warm-up phase during migration. We
conduct experiments for two popular tasks, i.e., vehicle counter
and pedestrian recognition. The task is migrated from an
edge node to the cloud. In order to show the worst-case
performance, we assume there is no component that can be
shared in the destination node, so all components of the
task have to be loaded and initialized during warm-up phase.
Intuitively, the destination node needs to receive J frames to
complete frame warm-up, so § and frame rate would affect
the time cost of frame warm-up. In this experiment, ¢ is set to
be 10 and 15, which has been large enough for the accuracy
of object tracking. The resolution is set to be 720p, and the
frame rate is set to be 5, 10, or 15.

We conduct experiments for each setting five times and
show the results in Table I. Since the results of pedestrian
recognition are similar as vehicle recognition, we only show
the results of vehicle counter task. From the table, we can
see that the time costs of container startup and component
warm-up are independent of frame rate and §, and they take
about 10 seconds. The frame warm-up takes more time as ¢
increases or frame rate decreases. The maximum average time
cost of these three steps is 11.96 seconds and the minimum
is 9.70 seconds. Since the migrated task keeps running on the
source node during the warm-up phase, the time overhead of
the warm-up phase is acceptable.

2) Performance of migration scheme: We compare our
migration scheme with “stop-and-start” migration. We im-
plement a simple ‘“stop-and-start” migration, in which we
stop the migrated task at the source node, start a copy of
migrated task on the destination, and then transmit the video
stream, states and unprocessed frames during task downtime
to the destination. There is no warm-up phase in ‘“stop-and-
start” migration. We conduct an experiment to migrate a
vehicle counter task from an edge to the cloud. The network

TABLE I

TIME COST OF WARM-UP PHASE.
Container Component Frame Total (s)
(fps, 6) startup (s) warm-up (s) warm-up (s) otal (s
Ave. Wor. Ave. Wor. Ave. Wor Ave. Wor.
5, 15 1.79 1.88 697 762 320 322 1196 12.68
(10, 15) 1.85 1.86 746 7.66 1.62 1.66 1093 11.16
(15,15) 1.81 1.87 777 794 1.35 1.36 1094 11.15
5, 10) 1.75 1.86 7.15 7.89 228 229 11.17 12.01
(10, 10) 1.81 1.89 727 1.76 1.22 1.23 10.30 10.83
(15, 10) 1.79 1.86 698 7.69 092 0.96 9.70 10.45
14
—o— Qurs
12 41 Stop-and-start
E 10.- ul
1= - -
8§47 L . il
5 - . o
0.2 — MIgIEt/ILEn completion time.
—200 50 100 150 200 250 300 350 400
Frame ID

Fig. 15. The latency of each frame of the migrated task.

bandwidth is set to be 50 Mbps, and the video quality is (720p,
5fps).

Figure 15 shows the latency of each frame before and after
a task migration. The first frame analyzed by the destination
task is denoted as frame 0. In our migration scheme, the
latency of frame O is larger than the frames after it, and the
gap between the latency of frame O and the average latency
of later frames is 59ms. The longer latency of frame O is
caused by the necessary transmission of statistic results from
the source to the destination, i.e., migration downtime. But in
“stop-and-start” migration, the gap is 12.39s, and the latency
of more than 300 frames is larger than the average latency of
later frames. It shows that “stop-and-start” migration causes
long downtime and the performance of the task degrades for
a longer time.

Figure 16 shows the GPU utilization during the migration.
After the task migration is completed, the GPU utilization of
our migration scheme is consistently around 32%, while the
GPU utilization of “stop-and-start” migration is significantly
higher than 32% at the first tens of seconds. This is because the
cloud needs to process a lot of queued frames under ““stop-and-
start” migration (in this experiment, 72 frames are queued),
while only 1 queued frame needs to be processed with our
warm-up phase in our migration scheme.

In summary, our migration scheme enables a near-seamless
migration without perceptible impact on system computation
load and task latency, while “stop-and-start” migration causes
performance degradation for a long period.

VIII. CONCLUSION

In this paper, we consider the scenario in which each camera
stream can be used by multiple tasks for their own purposes,
and propose an adaptive system to optimize the performance

v
o
L

é 30 4 %‘ﬂ?‘gdmﬂﬂaﬁjmmmommu% O000000TABOEH 0

E 20 Cl_uud receives thff' i i - -

J:-; migration request! : : Task mlgra_t\cn is completed.

2107 FE i = -o- Ours

O o & SN Stop-and-start
0 10 1315 20 30 40 50 60 70

Time (s)

Fig. 16. The GPU utilization of cloud at different migration schemes.

of all these video analytics tasks, i.e., accuracy and latency, in
a camera-edge-cloud architecture. The system enables sharing
of model computation as much as possible, in which a stream
can have two pipelines, one for a small model on an edge node,
and one for a big model in the cloud. Our system also exploits
DNN partition technique to trade a small amount of edge
computation resource for scare wide-area networking resource
when necessary. By profiling Faster R-CNN + ResNetl01, we
report that compressing feature maps is necessary to make
the partition of this complex model useful. We propose a
heuristic algorithm to maximize the total utility of all tasks
quickly. Furthermore, sometimes tasks might be required to
migrate because the scheduling decision made by the system
changes to be adaptive to the changing resource supply and
demand. In order to avoid the performance degradation during
migration, we comprehensively analyze the possible reasons of
performance degradation during migration, and design a non-
destructive migration scheme to ensure the performance of
tasks during migration. Simulations demonstrate our analytics
system performs better than state-of-the-art solutions.

REFERENCES

[1] IHS, “Security technologies: Top trends for 2020 ihs,”
https://cdn.ihs.com/www/pdf/1218/IHSMarkit-Security-Technologies-
Trends-2019.pdf.

[2] Avigilon, “Products : Know what is happening so you can act with
certainty,” http://avigilon.com/products/.

[3] Microsoft, “The future of computing: intelligent cloud and
intelligent edge.” https://www.microsoft.com/en-us/internet-of-
things/intelligentedge.

[4] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and
efficient object detection in edge computing: Challenges and solutions,”
IEEE Network, vol. 32, no. 6, pp. 137-143, 2018.

[5] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2018, pp. 115-131.

[6] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 236-252.

[7]1 X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in [EEE INFOCOM
2018-IEEE Conference on Computer Communications. 1EEE, 2018,
pp. 1421-1429.

[8] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan, “Bandwidth-efficient live video analytics for
drones via edge computing,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2018, pp. 159-173.

[9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, and X. S. Shen, “Edge
coordinated query configuration for low-latency and accurate video
analytics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 7,
pp. 4855-4864, 2019.

Z. Lu, K. S. Chan, and T. La Porta, “A computing platform for video
crowdprocessing using deep learning,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. 1EEE, 2018, pp. 1430-
1438.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), 2017, pp. 377-392.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253-266.

K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video
datasets with low latency and low cost,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 269-286.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” arXiv preprint
arXiv:1703.02529, 2017.

C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. R. Dulloor, “Scaling video analytics on constrained edge
nodes,” arXiv preprint arXiv:1905.13536, 2019.

C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proc. IEEE INFOCOM, 2020, pp. 1-10.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91-99.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615-629, 2017.

C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. 1EEE, 2019, pp. 1423—
1431.

“Large-scale video analytics,”
video-analytics.

Y. Huang, F. Wang, F. Wang, and J. Liu, “Deepar: A hybrid device-edge-
cloud execution framework for mobile deep learning applications,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). 1EEE, 2019, pp. 892-897.

T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Dis-
tributed inference acceleration with adaptive dnn partitioning and of-
floading,” in IEEE INFOCOM 2020-1EEE Conference on Computer
Communications. 1EEE, 2020, pp. 854-863.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019, pp. 1-16.

T. Tan and G. Cao, “Fastva: Deep learning video analytics through edge
processing and npu in mobile,” arXiv preprint arXiv:2001.04049, 2020.
Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the edge-
cloud barrier for real-time advanced vision analytics,” in 11th { USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
edge-cloud video analytics for robotics applications,” in Proceedings
of the IEEE International Conference on Computer Communications,
Virtual Conference, 2021, pp. 10-13.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155-168.

K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “Marvel:
Enabling mobile augmented reality with low energy and low latency,”

https://github.com/lolo-pop/scalable-

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

in Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, 2018, pp. 292-304.

Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359-376.

C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework
for cooperative video processing in multimedia iot systems,” [EEE
Transactions on Multimedia, vol. 20, no. 5, pp. 1126-1139, 2017.

K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 557-570.

W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in [EEE INFOCOM 2019-IEEE Conference on Computer
Communications. 1EEE, 2019, pp. 1270-1278.

X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelligence,”
in Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, 2020, pp. 409-421.

M. Ali, A. Anjum, O. Rana, A. R. Zamani, D. Balouek-Thomert,
and M. Parashar, “Res: Real-time video stream analytics using edge
enhanced clouds,” IEEE Transactions on Cloud Computing, 2020.

S. Wang, S. Yang, and C. Zhao, “Surveiledge: Real-time video query
based on collaborative cloud-edge deep learning,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. 1EEE, 2020,
pp. 2519-2528.

Y. Zhang, J.-H. Liu, C.-Y. Wang, and H.-Y. Wei, “Decomposable
intelligence on cloud-edge iot framework for live video analytics,” IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 8860-8873, 2020.

N. Hudson, H. Khamfroush, and D. E. Lucani, “Qos-aware placement
of deep learning services on the edge with multiple service implemen-
tations,” arXiv preprint arXiv:2104.15094, 2021.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, 2005, pp. 273-286.

M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” ACM SIGOPS operating systems review, vol. 43,
no. 3, pp. 14-26, 2009.

L. Hu, J. Zhao, G. Xu, Y. Ding, and J. Chu, “Hmdc: Live virtual machine
migration based on hybrid memory copy and delta compression,” Appl.
Math, vol. 7, no. 2L, pp. 639-646, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

P. G. Lindstrom et al, “Fpzip,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast lossless compression
of scientific floating-point data,” in Data Compression Conference
(DCC’06). IEEE, 2006, pp. 133-142.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017.

B. Patt-Shamir and D. Rawitz, “Vector bin packing with multiple-
choice,” Discrete Applied Mathematics, vol. 160, no. 10-11, pp. 1591-
1600, 2012.

Y. Censor, “Pareto optimality in multiobjective problems,” Applied
Mathematics and Optimization, vol. 4, no. 1, pp. 41-59, 1977.

N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). 1EEE, 2017, pp. 3645-3649.
W. Liu, G. Kang, P-Y. Huang, X. Chang, Y. Qian, J. Liang, L. Gui,
J. Wen, and P. Chen, “Argus: Efficient activity detection system for
extended video analysis,” in Proceedings of the IEEE Winter Conference
on Applications of Computer Vision Workshops, 2020, pp. 126—133.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231-1237, 2013.

Gurobi, https://www.gurobi.com.

