
Root Cause Analysis of Anomalies of Multitier
Services in Public Clouds

Jianping Weng, Jessie Hui Wang, Jiahai Yang, Yang Yang
Tsinghua National Laboratory for Information Science and Technology
Institute for Network Sciences and Cyberspace, Tsinghua University

Abstract—Anomalies of multitier services running in cloud
platform can be caused by components of the same tenant or
performance interference from other tenants. If the performance
of a multitier service degrades, we need to find out the root
causes precisely to recover the service as soon as possible. In
this paper, we argue that cloud providers are in a better position
than tenants to solve this problem, and the solution should be
non-intrusive to tenants’ services or applications. Based on these
two considerations, we propose a solution for cloud providers to
help tenants to localize root causes of any anomaly. We design a
non-intrusive method to capture the dependency relationships of
components, which improves the feasibility of root cause localiza-
tion system. Our solution can find out root causes no matter they
are in the same tenant as the anomaly or from other tenants. Our
proposed two-step localization algorithm exploits measurement
data of both application layer and underlay infrastructure and
a random walk procedure to improve its accuracy. Our real-
world experiments of a three-tier web application running in a
small-scale cloud platform show a 38.9% improvement in mean
average precision compared to current methods.

I. INTRODUCTION

Nowadays, more and more multitier services or cloud appli-
cations are adopting IaaS clouds to manage their service infras-
tructures. But in public clouds, guest VMs will contend for the
shared resources, which can result in performance interference
[1][2][3] between tenants. So, multitier services running inside
the IaaS cloud are prone to performance anomalies due to not
only software bugs of multitier services components but also
performance interference between tenants.

In recent years, researchers have proposed many solutions to
solve this problem. Some researchers try to find out root causes
of anomalies in a dedicated environment [4][5][6][7]. These
solutions assume there is no outside influence that can interfere
with their resources, so they cannot work well in public
cloud environment. Some researchers try to take performance
interference into consideration [8][9]. But the problem has not
been well solved. [8] only considers performance interference
caused by components of their own service. [9] can only find
out root causes of part of anomalies because it only collects
and uses resource utilization of infrastructure.

Obviously, performance interference is caused by under-
lay resource contention, and only cloud providers can have
the information about underlay resource contention among
different tenants. So we argue that cloud providers are in

Corresponding author: J.H. Wang (hwang@cernet.edu.cn).

a better position to diagnose these anomalies. In previous
works [4][5][6][7][8], they need to modify the application
code or know dependency relationships of service components.
This is not easy or even infeasible, because the dependency
relationships among multitier services components are very
complicated, and tenants would not like to disclose details of
their services.

In this paper, we propose a solution for a public cloud
provider to help its tenants to locate the root causes of
anomalies of multitier services. Our solution can find out root
causes no matter they are in the same tenant as the anomaly
or from other tenants, and the solution is non-intrusive to
tenants’ services. To determine the root causes, we define a
metrics called similarity score, which is calculated based on
both the application-level metrics data and resource utilization
of underlay infrastructure. We also implement a random walk
algorithm which simulates the influence of anomaly propa-
gations in multitier services to improve the accuracy of our
solution.

We implement and deploy the system in our real-world
small-scale cloud platform and conduct some experiments on
a three-tier web application. By the experiments, we show
the rationality and necessity of two steps in our localization
algorithm: similarity score and random walk propagation.
Experimental results show a 38.9% improvement in mean
average precision compared to current methods. Summarily,
we make the following contributions in this paper:

• We propose a non-intrusive method to capture the com-
plex dependency relationships of multitier components,
which improves the feasibility of root cause localization
system.

• Our solution can find out root causes of an anomaly no
matter they are in the same tenant as the anomaly or from
other tenants.

• We design a two-step localization algorithm, which is
based on monitoring of both application layer and under-
lay infrastructure and a random walk procedure. Exper-
iments demonstrate the algorithm outperforms previous
works.

The rest of the paper is organized as follows. Section II
presents an overview of previous related work. Section III
introduces two types of anomaly propagation in public cloud
by examples. Section IV illustrates how to find out all possible
root cause VMs. Section V shows the details of our two-step978-1-5386-2704-4/17/$31.00 2017 IEEE

localization algorithm. Section VI introduces our experiment
settings and evaluation results. Section VII concludes our
work.

II. RELATED WORK

In recent years, many solutions have been proposed to
solve this problem from the aspect of tenants [4][5][6][7].
These works need to modify the application code or need to
know dependency relationships of service components. These
solutions can find out root causes of anomalies in a dedicated
environment. However, more and more multitier services are
deployed in public clouds, and these tenants may interfere
with each other due to resource contention. Such performance
interference have been studied in [1][2] and [3].

Previous works cannot diagnose anomalies caused by per-
formance interference of other tenants. In 2013, Kim et al. [8]
introduces a pseudo-anomaly clustering algorithm on historical
data to capture the external factors such as the performance
interference, but the work only considers the performance
interference caused by components of their own service.
Therefore, it still cannot work well in public clouds with many
tenants.

In 2016, Lin et al. [9] proposes a solution that captures
anomaly propagation among different tenants. Obviously, only
cloud providers can have the information about underlay re-
source contention among different tenants. So cloud providers
are in a better position to diagnose anomalies caused by
performance interference. As far as we know, it is the only
work that solves the issue from the aspect of cloud providers
before this paper.

But the work by Lin only collects resource utilization of
infrastructure and simply uses anomaly propagation distance to
rank the possible root causes, so the result is not that accurate.
In this paper, we calculate the similarity using metrics data of
different levels and run random walk algorithm to determine
the root causes.

III. TWO TYPES OF ANOMALY PROPAGATION
IN PUBLIC CLOUD

In this section, we would conduct experiments to see if the
performance of one virtual machine vmi can be affected by
applications running on other virtual machines located in the
same physical machine as vmi.

We conduct experiments in a small-scale cloud shown in
Figure 1. The cloud consists of 5 physical machines and there
are two tenants, e.g. TA and TB . In our experiments, we
assume the allocation result is that (vm1, vm6), (vm4, vm7),
and (vm5, vm8) are VM pairs that are co-located in a same
physical machine. Both two tenants are runing a 3-tiered web
application RUBiS [10] using their VMs.
TA’s LVS (vm1) receives users’ requests, and further di-

rects requests to one of the two apaches (vm2 and vm4)
according to the content of requests. In other words, vm1

implements a task-based load balance. We set the load balance
policy as follows: requests with SearchItemsByRegion func-
tion and ViewUserInfo function (denoted by R1) are served

Fig. 1. Two tenants’ multitier services in a cloud

by vm2, and requests with SearchItemsByCategory function
and ViewItem function (denoted by R2) are served by vm4.
Then vm2 depends on vm3, and vm4 depends on vm5,
to get necessary information from mysql database to join
and decorate results for users’ requests. In summary, we
can see in our experiments TA have two call paths, i.e., P1

(vm1 → vm2 → vm3) and P2 (vm1 → vm4 → vm5) as
labeled in Figure 1, to handle users’ requests.

At the beginning of our experiment, every virtual machine of
both tenants works well. Then we try to increase the utilization
rate of vm8 (of TB) gradually and measure if this increase
can degrade the quality of service of TA. We control CPU
load by using a tool called cpu-load-generator [15], which is
implemented based on the well-known tool lookbusy [13].

Fig. 2. Response time of tenant A’s website

From Figure 2, we can see that after vm8’s CPU utilization
rate is greater than a certain threshold, i.e. 45%, the average
response time of R2’s requests keeps increasing as vm8 is
more and more heavy-loaded while the average response time
of R1’s requests does not.

The reason is that vm5 and vm8 share the CPU resource of
the same physical server. Therefore, when vm8 has a heavier
load, it would affect the performance of vm5. Furthermore,
since TA depends on vm1, vm1 depends on vm4, and vm4

depends on vm5 to complement users’ requests, vm5’s per-
formance degradation further results in the longer response
time of TA’s R2 requests. We can observe that there are two
different types of anomaly propagation, i.e., (vm8 → vm5)
due to collocation relationship between different VMs and
(vm5 → vm4 → vm1) due to service call.

So, in public clouds, there are two types of anomaly
propagation paths: 1) between co-located VMs because of

resource contentions, 2) among multitier service components
along the path of service call.

IV. ANOMALY PROPAGATION GRAPH

In this section, for one anomaly under study, say anomaly
a, we try to find out all possible causes of the anomaly a and
construct the anomaly propagation graph (APG) GAPGa . We
need to find out all possible propagation paths, i.e., collocation
dependency edges and service call dependency edges. As a
cloud provider, it’s easy for him to retrieve information about
collocated VM pairs, i.e., collocation edges.

In terms of service call edges, as we know, for a request r,
it would trigger a series of service calls, i.e., communications,
among a set of VMs. All these service call edges would
form a directed acyclic graph. Let us call this graph as VM
Communication Graph (VCG). In terms of graph topology,
VCG is in fact a subgraph of the corresponding APG.

However, cloud providers do not have the information di-
rectly about call relationships of services run by their tenants.
They have to collect and analyze data to infer these service
call dependency edges. Considering tenants’ privacy concerns
and the complexity of multitier services, we argue that cloud
providers should construct VCG based on request tracing
technique without intrusiveness to multitier services.

A. Request Tracing of Multitier Services

In this paper, we exploit PreciseTracer proposed by Sang
in [11] because it can not only do request tracing without
the knowledge of source code but also get more accurate
results through kernel instrumentation. In multitier service,
a request triggers a series of interaction activities in the OS
kernel or shared libraries, e.g. sending or receiving messages.
PreciseTracer uses Systemtap [12] to capture those activities.

PreciseTracer provides us the causal path graph which
is a directed acyclic graph, wherein vertices are activities
of components and edges represent causal relations between
two activities. PreciseTracer records an activity of sending a
message as Sii,j , which indicates a process i sends a message
to a process j and records an activity of receiving a message
as Rji,j , which indicates a process j receives a message from
a process i.

B. VCG Construction

Now we need to transform the causal graph into VCG for
our further root cause analysis. In a causal path graph, because
of the complexity of multitier service function, a service, i.e.
a process, on one VM might be called many times by one
other VM, and the causal path graph records each individual
time of the communication between these two VMs, i.e.,
there are multiple edges between two VMs. Figure 3 gives an
example of such causal path graph produced by PreciseTracer
in the scenario shown in Figure 1. In this graph, service 1 in
vm1 calls service 2 in vm4 for two times. The first call is
represented by S1

1,2 and R2
1,2 (vm1 requests service on vm4);

and S2
2,1 and R1

2,1 (vm4 responds vm1’s request). The second
call is described by S1′

1,2 and R2′

1,2; S2′

2,1 and R1′

2,1. Different

from the first call, this time service 2 needs to call service 3
in vm5 for two times to get necessary data and then return
results to service 1.

Fig. 3. A causal path graph produced by PreciseTracer

We do not concern the details of these communications
among services. To solve the problem in this paper, what we
need to know is dependency relations among related VMs,
i.e., service call edges at VM level. As an example, the
corresponding VCG for Figure 3 is shown in Figure 4.

Fig. 4. The VCG of Figure 3

The challenge to transform Figure 3 into Figure 4 is how
to determine the direction of edges between two VMs. As we
know, a complete service call usually consists of two stages,
i.e., stage 1 during which a VM vms sends a request to another
VM vmd, and stage 2 during which vmd responding to vms.
The direction of the edge between two VMs should be from
the requester to the responder, and the VM who initiates the
first communication between two VMs is the requester.

C. APG Construction

Now we have found all collocation edges based on nova
APIs, and we also obtained VCGs such as Figure 4 that in-
cludes all service call edges. Therefore, now we can construct
the APG by combining VCG and VM co-location relationship.

Take the scenario shown in Figure 1 as an example, assume
there is a ViewItem request from TA’s users. The request will
be handled through path 2, and the APG for this request is
shown in Figure 5.

Fig. 5. The APG of ViewItem requests in Figure 1

V. ROOT CAUSE LOCALIZATION

In this section, we will try to point out the most likely
root causes from all related elements included in GAPGa . We
define P avmi

as the probability of vmi being the root cause of
the anomaly a.

Let us denote the root cause VM as vmroot. There should
be a correlation, i.e., similarity, between the metrics data of
vmroot and the response time. As there are many services
provided by the multitier service application and if a request
calls a different service, it may form a different causal path
graph. We define R(r) as a collection of requests that form the
same causal path graph as r does. Obviously different requests
in the R(r) happen at different time. We define S(vmi,R(r))
as the similarity between the metrics data of vmi and the
response time of requests R(r), e.g., R2 mentioned in Section
III. The similarity can be used to derive the probability of
being the root cause to a certain extent.

However, one VM vmi with a high S(vmi,R(r)) is not
a sufficient condition to determine that vmi must be a root
cause. For example, in Figure 1, assume both TA and TB are
providing online auction services, it is highly possible that
more users will visit the two websites at weekends and then
more requests need to be handled at weekends for services of
both TA and TB . It is natural that TA’s response time will be
longer than weekdays. At the same time, we can see vm6

will be busier than weekdays. Performance of vm6 shows
a high correlation with the response time of TA’s requests,
i.e., S(vm6, R2) is high. Can we conjecture that vm6 is a
root cause of TA’s slow response at weekends? Obviously,
we cannot. vm6 is correlated with TA’s response time only
because TA and TB share a same periodic user behavior
pattern.

In the case mentioned above, vm6 does not belong to TA
and it appears in APG just because it is co-located with vm1

of TA. So vm6 can interfere the performance of TA’s services
only by its resource contentions with vm1. If this resource
contention really results in longer response time, it must be
true that S(vm1, R2) will also be high. In our solution, we
exploit the random walk algorithm to reflect the possibility of
anomaly propagation.

A. Similarity Calculating

We define a function R(i,M,R(r), ts, te) that calculate the
correlation of the metric M of vmi and response time (RT) of
requests R(r) which are issued from ts to te based on Pearson
Correlation Coefficient. The calculation formula is as follows:

R(i,M,R(r), ts, te) =
∫ te

ts

(
M t

i − µMi

) (
RTR(r,t) − µRT

)
σMiσRT

dt,

wherein M t
i means the metric M data of vmi at time t,

RTR(r,t) means the response time of a request in R(r) that
was issued at time t.

We then calculate the similarity S(vmi,R(r)) based on the
correlation defined above. If vmi is a part of the multitier
service components, we calculate the similarity according to
the service time Ti of it. And for co-located VMs, we first

calculate the correlations according to the different types of
resource assumption, e.g. CPU and memory consumption, I/O
and network throughput, and then select the maximum of
these correlations to denote its similarity. This is because the
service performance can be interfered due to different types
of resources contention. The calculation formula of similarity
is as follows:

S(vmi,R(r)) =

{
R(i, T ,R(r), ts, te), if vmi ∈ V CG
max{R(i, ra,R(r), ts, te)| ra ∈ RA}, otherwise

wherein RA means the collection of different types of re-
sources contention.

Given the formula above, we need to determine the time
point ts and te. We set te as the time point when a tenant
submits the root cause analysis job to our system. We set ts
as the time point Td when the performance of multitier service
starts to degrade. If the tenant knows the Td, we set ts as the
time point the tenant provides to us. Otherwise, we can find
out Td according to the formula as follows:

Td = min{tp|
RTR(r,tp)

f(tp − w, tp)
> δ}

wherein f(tp − w, tp) is a function that can calculate the
average response time of requests in R(r) that are issued
during the time window which lasts from (tp − w) to tp and
w is the length of the time window.

B. Random Walk over APG
After identifying those VMs with high S(vmi,R(r)), we

need to further consider the possibility that those VMs prop-
agate their anomaly through the APG. We conduct a random
walk over the APG as follows. A random walker starts from
a random VM, say vmi, and moves from vmi to one of
the neighbor vmj for some time according to a transition
probability matrix Q. Qij is the probability of the random
walker moving from vmi to vmj . The problem here is how
to derive the value of Qij .

Given a GAPG(V,E), we can construct a real value adja-
cency matrix A for it. Aij will be proportional to Qij . We can
get Q by normalizing every row of the matrix A. There are
three cases to determine the value of Aij . For the first case,
if edge eij ∈ E, we set Aij as S(vmj ,R(r)) as the random
walker needs to move to vmj proportionally to the similarity
of vmj . For the second case, if eij ∈ E and eji /∈ E, Aji
is set as ρS(vmi,R(r)) for some constant ρ ∈ [0, 1). That
is we add backward-edges. If without backward-edges, once
the random walker falls into VMs that have low similarity,
there is no way to escape out. For the last case, if i = j, we
set Aij as the similarity of vmi subtracted by the maximum
similarity score of the neighboring VMs. That is we add self-
edges. If without self-edges, the random walker is enforced to
move to the neighbors even if the current node shows a higher
similarity and all the neighboring VMs do not. In summary,
we can calculate matrix A according to the following formula.

Aij=

S(vmj ,R(r)), if eij ∈ E
ρS(vmj ,R(r)), if eji ∈ E, eij /∈ E
max

(
0, S(vmi,R(r))−maxk:ejk∈ES(vmk,R(r))

)
, if j = i

Given matrix A, the transition probability matrix Q of our
random walk is represented as follows.

Qij =
Aij∑
j Aij

VI. EXPERIMENT AND EVALUATION

A. Experimental Environment

Fig. 6. Experimental environment

As shown in Figure 6, we use OpenStack [14] to do VM
management and resource allocation. We use PreciserTracer
[11] to do request tracing of multitier services to construct
causal path graph of requests. PreciserTracer needs to deploy
an agent called TCP Tracer on each VM to record interaction
activities of interest. Then PreciserTracer would correlates
those activity logs of different VMs into causal path graphs.
We then calculate the metrics data about service time of each
VM through doing data analysis on the causal path graphs,
and save the results to the database. We also use the Ganglia
which is deploy on each physical server to collect resource
utilization of each VM. The root cause localization system
can find out the possible root cause list and corresponding
probability if an anomaly of a request occurs.

Fig. 7. Response time of different cases

B. Experiment Setup

Experiment scenario. In the experiment, we use the same
scenario as shown in Section III.

Anomaly injection. We attempt to do anomaly injection to
the RUBiS of TA by 4 cases:
• Case 1: We inject some delays last from 2ms to 25ms

into PHP “Search-ItemsByCategories” function on vm4.
• Case 2: we control the CPU utilization of vm8 from 10%

up to 90% and from 90% down to 10% with lookbusy
[13] to interfere the performance of mysql on vm5.

• Case 3: Similar to case 2, we control the CPU utilization
of vm6 from 10% up to 90% and then from 90% down
to 10% to interfere the performance of LVS on vm1.

• Case 4: We combine case 2 and case 3. That is, we
orchestrate both the CPU utilization of vm8 and vm6

at the same time in order to interfere the performance of
mysql on vm5 and LVS on vm1.

Figure 7 shows the response time of SearchItemsByCategory
requests of TA’s website in different cases. We can find that
except for case 3, the performance of the website degrades
seriously. For case 3, because the CPU utilization of LVS
on vm1 is so low that vm6 cannot interfere the performance
of vm1 by CPU resource contention, the performance of the
website doesn’t degrade. So next we use different root cause
analysis methods to find out the root causes of the three cases
i.e., case 1,2 and 4, to compare the accuracy of different
methods.

As the ground truth, the root cause of case 1 is vm4. For
case 2, the performance of the website degrades because the
performance of vm5 is interfered by vm8, the root causes of
case 2 are vm8 and vm5. For case 4, as shown in case 3,
the increase of the CPU utilization of vm6 doesn’t interfere
the performance of the website. The root causes of case 4 are
vm8 and vm5.

C. Performance Evaluation

Baseline methods. For the purpose of comparison, we
introduce three baseline methods:
• Random Selection (RS): A human without any domain

knowledge will examine VMs in random order. We mimic
this behavior by issuing random permutations.

• Sudden Change (SC): A natural way for a human to find
root causes is to compare the metrics in the current and
previous time windows and check any sudden change
between the two time windows. In SC, it calculates the
ratio of average metrics on both the time periods and
refers to this ratio as the root cause score of each VM.

• Distance Based Rank (DBR)[9]: DBR regards the root
causes as a set of misbehaving entities whose propagation
graphs best capture all the observed anomalies. And it
uses a ranking method for selecting the best propagation
graph. The rank of a propagation graph is determined
by the minimum total distance from the source anomaly
entity to all other entities.

Evaluation metric. We use the following two evaluation
metrics proposed by [8] to quantify the performance of each
method on a set of anomalies A, where ψa(i) means the rank
of vmi as the root cause of an anomaly a given by every
method and Ψa(i) represent whether vmi actually is the root
cause of an anomaly a (that is, either 0 or 1):
• Precision at top K (PR@K) indicates the probability that

top K VMs given by each algorithm actually are the root
causes of each anomaly.

PR@K =
1

|A|
∑
a∈A

∑
i:ψa(i)≤K Ψa(i)

min (K,
∑
i Ψa(i))

• Mean Average Precision (MAP) quantifies the overall
performance of a method, where N is the number of VMs:

MAP =
1

|A|
∑
a∈A

∑
1≤k≤N

PR@k

Experiment Results. We evaluate our method and all the
three baseline methods on that three cases. Figure 8 shows
PR@1, PR@2, PR@3 of different methods. Table I shows
the average MAP metric of different methods. In every eval-
uation metric, our method outperforms the baseline methods
by a large factor. More specifically, in terms of MAP, the
improvement over the DBR method is approximately 38.9%.

Fig. 8. Precision top K of different methods

TABLE I
MAP OF DIFFERENT METHODS

method RS SC DBR ours
MAP(%) 0.36 0.49 0.72 1.00

D. Discussion of Our Approach

We show the necessity of this random walk algorithm by a
data analysis for case 4. The first row of Table II shows the
similarity score of each VM (without random walk), while the
second column shows the root cause probability of each VM,
i.e., considering both similarity and random walk. In case 4, we
use the same tool and algorithm to increase the CPU utilization
of vm6 and vm8, so they have approximately same similarity
score, i.e., 0.567 and 0.599. We can also see that the similarity
score of vm1 is 0.052 which is very low. It indicates that
vm1 is not affected by vm6’s high CPU utilization. In other
words, vm6 is not a root cause for TA’s slow response. This
is consistent with our result of random walk. From the second
row of the table, we can see that the root cause probabilities
of them given by random walk algorithm are 0.067 and 0.403.
By the random walk algorithm, we exclude the vm6 from the
possible root cause VM list.

Therefore it is necessary for us to use the random walk to
determine the probability of being the root cause, because it
can consider the possibility that a VM propagates its anomaly
through the APG and return the probability more precisely.

TABLE II
SIMILARITY AND PROBABILITY OF EACH VM IN CASE 4

VM vm1 vm4 vm5 vm6 vm7 vm8

similarity
(no rw) 0.052 0.31 0.993 0.567 0.053 0.599

probability
(with rw) 0.0536 0.132 0.325 0.067 0.017 0.403

VII. CONCLUSION

In this paper, we propose a solution for a public cloud
provider to help its tenants to locate the root causes of
anomalies of multitier services. Our method is non-intrusive
to tenants and more feasible to be deployed in public clouds.
Our solution is able to find both factors which can cause
anomalies in public clouds: component bugs in the anomalous
service, and performance interference from other tenant. Our
consideration about interference among tenants is essentially
valuable for tenants to localize the root causes of anomalies
and improve the quality of their services. By the experiments,
we show the rationality and necessity of two steps in our
localization algorithm: similarity score and random walk prop-
agation. Experimental results demonstrate that our solution
outperforms previous works.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grant No. 61202356.

REFERENCES

[1] Koh, Younggyun, et al. ”An analysis of performance interference effects
in virtual environments.” 2007 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software. IEEE, 2007.

[2] Xu, Yunjing, et al. ”Workload-Aware Provisioning in Public Clouds.”
IEEE Internet Computing 18.4 (2014): 15-21.

[3] Xu, Yunjing, et al. ”Bobtail: Avoiding long tails in the cloud.” Presented
as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). 2013.

[4] Nguyen, Hiep, et al. ”FChain: Toward black-box online fault localization
for cloud systems.” Distributed Computing Systems (ICDCS), 2013 IEEE
33rd International Conference on. IEEE, 2013.

[5] Marwede, Nina, et al. ”Automatic failure diagnosis support in distributed
large-scale software systems based on timing behavior anomaly correla-
tion.” Software Maintenance and Reengineering, 2009. CSMR’09. 13th
European Conference on. IEEE, 2009.

[6] Wang, Kui, et al. ”A methodology for root-cause analysis in component
based systems.” 2015 IEEE 23rd International Symposium on Quality of
Service (IWQoS). IEEE, 2015.

[7] Mace, Jonathan, Ryan Roelke, and Rodrigo Fonseca. ”Pivot tracing:
dynamic causal monitoring for distributed systems.” Proceedings of the
25th Symposium on Operating Systems Principles. ACM, 2015.

[8] Kim, Myunghwan, Roshan Sumbaly, and Sam Shah. ”Root cause detec-
tion in a service-oriented architecture.” ACM SIGMETRICS Performance
Evaluation Review. Vol. 41. No. 1. ACM, 2013.

[9] Lin, Jieyu, et al. ”Automated anomaly detection and root cause analysis in
virtualized cloud infrastructures.” Network Operations and Management
Symposium (NOMS), 2016 IEEE/IFIP. IEEE, 2016.

[10] (2009) RUBiS: Rice university bidding system. http://rubis. ow2.org/
[11] Sang, Bo, et al. ”Precise, scalable, and online request tracing for multitier

services of black boxes.” IEEE Transactions on Parallel and Distributed
Systems 23.6 (2012): 1159-1167.

[12] Systemtap, http://sourceware.org/systemstap/.
[13] lookbusy, http://www.devin.com/lookbusy/
[14] OpenStack, http://docs.openstack.org/
[15] cpu-load-generator, https://github.com/beloglazov/cpu-load-generator

