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a b s t r a c t

Currently, multicast in cloud networks without the support of underlay IP multicast relies on one-to-all repli-

cations, which wastes networking resources and may induce bottlenecks. In this paper, we point out this is-

sue should be solved as an overlay routing problem and the special architecture of cloud networks should be

fully exploited. Then we propose a solution which includes a SDN framework and an algorithm to construct a

degree-constrained overlay multicast routing tree. Our simulations show that its performance is better than

current solution. Moreover, it can deal with various multicast groups and it scales well with both group size

and cloud size.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, cloud networks have been more and more pop-

lar. In most of cloud networks, operators interconnect a number of

hysical or virtual layer 2 LANs through a layer 3 network to pro-

ide a single large scale flat LAN for cloud users. Conventionally, we

all the physical network which includes physical machines and in-

erconnections among them as “underlay network”, and call the vir-

ual network which includes virtual machines, virtual switches in hy-

ervisors, and virtual interconnection among these virtual switches

s “overlay network”. Fig. 1 illustrates such a data center, where hun-

reds or thousands of computers are connected with each other phys-

cally, and each of these computers is virtualized as a virtual subnet

hich consists of a virtual switch in its hypervisor and a number of

irtual machines.

Most of current cloud networks exploit encapsulation-based tun-

el to construct the virtual overlay network and enable the communi-

ation between virtual machines in different virtual subnets through

he physical network which connects the physical machines.

In the mechanisms based on encapsulation-based tunnel, tunnel

ndpoints, which might be virtual switches in hypervisors of physical

achines, should learn and maintain a mapping between the un-

erlay network and the overlay network, i.e., the mapping between

verlay addresses of virtual machines and underlay addresses of

he physical machines where their corresponding virtual switches

re located on. Based on these mappings, tunnel endpoints can

nable communications between any virtual machines through
∗ Corresponding author. Tel.: +86 10 62603212.

E-mail address: hwang@cernet.edu.cn (J.H. Wang).
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ncapsulation and de-encapsulation. As a result, a large virtual flat

AN was formed, wherein virtual machines are able to move from

ne virtual LAN to other virtual LANs smoothly and flexibly, and all

etwork resources can be allocated dynamically to improve resource

tilization efficiency.

This encapsulation and mapping method works well most of the

ime, but problems may occur in some cases. First, in some cloud net-

orks, tunnel endpoints are only able to learn mappings of partial

irtual machines. It is possible that the tunnel endpoint receives a

acket but does not know the related mapping, i.e., its corresponding

nderlay destination address. Then the virtual switch must broad-

ast the packet with unknown destination to all tunnel points in the

loud network. Although the broadcast scope can be reduced if the

enant ID and VxLAN ID are considered, it still generates many broad-

ast packets in the overlay network. Besides these broadcast pack-

ts generated by unicast packets with unknown destinations, cloud

sers may run some applications with multicast requirements, such

s publish-subscribe services, web cache updates, or system monitor-

ng etc., and these applications may generate lots of multicast packets.

In case that the underlay network is multicast-enabled, these

verlay broadcast/multicast packets can be mapped to underlay mul-

icast groups and then the communication can be completed success-

ully. However, cloud operators usually would like to use low-end

witches which may not support multicast functions, and enabling

ulticast in underlay IP networks may incur a lot of complexity on

loud networks.

Therefore, we have to solve the multicast problem in cloud net-

orks without the support of underlay IP multicast. Current solution

imply exploits multiple unicast connections to complete a multi-

ast or broadcast. Logically the solution works as follows. After the

irtual switch receives a packet with a unknown destination from

http://dx.doi.org/10.1016/j.comcom.2015.05.016
http://www.ScienceDirect.com
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Fig. 1. Connect layer 2 virtual LANs through a core network.
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its virtual machines, it sends request to the mapping server which

can map the overlay broadcast or multicast to a list of underlay ad-

dresses. Then the switch can set up tunnels to each address in this

list, then replicate, encapsulate and send out the packet to every

destination.

This one-to-all replication method is a feasible and simple solu-

tion when the multicast group is small. But if the multicast group is

with a lot of members, it would incur a lot of replication overhead to

the source tunnel endpoint, and some receiving nodes would experi-

ence a very long delay because of the bottleneck for replicating. The

other problem is that the outgoing links of the source node might be

occupied by these replications, which may affect the performance of

traffic flows of other applications on these links.

In this paper, we try to solve the multicast problem in cloud net-

works by proposing a degree-constrained overlay multicast scheme.

We argue that the multicast problem should be solved at overlay in-

stead of underlay, and we should take advantage of features of cloud

networks to improve the efficiency of overlay multicast.

In fact, current one-to-all replication model can be viewed as a

simple overlay multicast solution for cloud networks. In this sim-

ple model, the multicast distribution tree is a one-hop tree, i.e., star

topology. In this paper, we plan to design an efficient multicast distri-

bution tree to replace this star distribution topology, and make sure

that there is no single bottleneck for replication and traffic transmis-

sion. Furthermore, the distribution tree should be able to reduce the

traffic overhead incurred on the cloud network, and control the maxi-

mum and average delay experienced by nodes in the multicast group.

The main contributions of this paper are listed as follows:

• We point out that the multicast issue in cloud networks should

be solved at overlay (application) layer, and propose an overlay

multicast routing framework.

• We point out that multicast problem is easier in cloud networks

than in the Internet, and the construction of multicast routing tree

should rely on special architecture of cloud networks instead of

complex real-time measurement.

• We design an algorithm to construct a degree constrained over-

lay multicast routing tree. Our simulations demonstrate that our

algorithm works better than current one-to-all replication model.

We also show that it can deal with various multicast groups, and

it scales well with group size and cloud size.

The remainder of this paper is organized as follows. In Section 2,

we summarize related works on overlay multicast in the Internet, in-

terconnection architectures and virtualization technologies of cloud

networks, and recently proposed multicast solutions for cloud net-

works. In Section 3, we introduce some necessary preliminaries and

propose the multicast routing issue in cloud networks. In Section 4,

we propose our SDN framework to solve the multicast problem.

Section 5 focuses on the algorithm to construct the routing tree.

Our simulations and performance evaluation are shown in Section 6.

Section 7 concludes the paper.
. Related work

During the early stage of the Internet, whether the multicast ser-

ice should be added to IP layer or implemented by end hosts at ap-

lication layer had been discussed for a long time. In 1989, Deering

rgues that multicast should be implemented at the IP layer in [1] and

P multicast became the first significant feature that has been added

o the IP layer. However, despite most routers today implement IP

ulticast, IP multicast has several drawbacks that have so far pre-

ented the service from being widely deployed. On the other hand,

umerous application layer multicast algorithms and protocols have

een proposed [2,3].

Therefore, Chu et. al. [4] revisit the issue of whether multicast re-

ated functionality should be implemented at the IP layer or at the

nd systems (application layer) . The authors believe that End Sys-

em Multicast has the potential to address most problems associ-

ted with IP multicast. Since all packets are transmitted as unicast

ackets, deployment may be accelerated. They conducted a detailed

valuation of the End System Multicast architecture, and concluded

hat End System Multicast is a promising architecture for enabling

mall and medium sized group communication applications on the

nternet.

In 2014, Coras et. al. also tries to solve the multicast problem in the

nternet by using overlay routing. The focus of this work is on inter-

omain multicast issues, and intra-domain multicast is still solved by

P layer as in current Internet. In the proposed scheme, some routers

hould be upgraded to be overlay routing nodes, which is slightly

ifferent from the end system multicast where servers are involving

outing. But both schemes are consistent with the concept of overlay

outing.

The reason why End System Multicast is not suitable for large

ized multicast group is that the system has to probe the underlay

etwork to make sure that the overlay or application layer can exploit

nderlay links efficiently. As the group size increases, the probe over-

ead becomes unbearable, and the efficiency lost because of moving

he function from underlay to overlay also increases.

The situation in cloud networks is different from the Internet.

nternet is operated by many corporations and is heterogeneous in

ature. A cloud network is always operated by one corporation and

an be designed carefully, so that it is possible for the overlay to ex-

loit underlay links efficiently based on prior knowledge without any

robing or measurement. In this paper, we apply the idea of end sys-

em multicast to the multicast problem in cloud networks and take

dvantage of features of cloud networks to avoid the measurement

verhead. The proposed scheme is especially efficient when the mul-

icast group size is larger.

Numerous problems in conventional data centers have driven re-

earchers to propose and design various data center architectures

o solve these issues [5,6]. Data centers can be categorized mainly

n two classes, the switch-centric and the server-centric [7]. The

epresentatives of switch centric are Fat-Tree [8], VL2 [9] and Port-

and [10], while the representatives of server centric are BCube [11],

Cell [12] and Ficonn [13]. In switch centric, switches are the domi-

ant components for interconnection and routing whereas in server-

entric, servers with multiple Network Interface Cards (NIC) exist and

ake part in routing and packet forwarding decisions. Currently, most

loud networks are switch-centric architecture, which is more like

he Internet; while the server-centric architecture is closer to the idea

f overlay routing. In this paper, we take Fat-Tree as an example of

loud network architecture and design the multicast distribution tree

onstruction algorithm based on it. FAT-TREE leverages largely com-

odity Ethernet switches to support the full aggregate bandwidth

f clusters consisting of tens of thousands of elements. The authors

rgue that appropriately architected and interconnected commodity

witches may deliver more performance at less cost than available

rom todays higher-end solutions.
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The above architectures solve the problem of how the physical

etwork is constructed by low-end servers and low-end switches.

enerally, cloud operators should virtualize this physical network,

nd provide a single large LAN to cloud users [14]. OTV [15] [16]

nd VxLAN [17] are two popular networking virtualization technolo-

ies. Both of them exploit encapsulation-based tunnels, although

hey are designed for different scenarios. With OTV, broadcast traf-

c among endpoints is reduced, but endpoints have to maintain

lot of mapping entries, therefore OTV is suitable for connect-

ng several geographical distributed sites. On the other hand, with

xLAN endpoints do not need to maintain a lot of mappings, but

hey need to broadcast a lot of packets among endpoints, therefore

xLAN works well in a single large-sized site and is not suitable for

onnecting sites across the Internet. Our scheme in this paper can

ork with any virtualization technologies using encapsulation-based

unnels.

Recently, multicast in cloud networks has drawn attention of re-

earchers. In [18], the authors propose a stateless source routing

cheme, which is called as Code-Oriented eXplicit multicast (COX-

ast), to ensure that unified unicast and multicast packets can be de-

ivered in the data center networks. The source node constructs the

nicast path and multicast tree by encoding the corresponding out-

ut port bitmap of each intermediate node, and packets can be self-

outed to multiple receivers without requiring header modification.

n addition, intermediate switches/routers on the path/tree can be

tateless. The authors argue that COXcast can simplify the deploy-

ent and management of a large number of medium-scale multicast

roups, especially when applied to large-scale DCNs. Unfortunately,

his scheme requires that all physical networking devices should sup-

ort source routing, and would incur cost on all data packets due to

he protocol header for source routing.

The authors of [19] also noticed the multicast problem in cloud

etworks. They focus on the scalability of multicast, and regard the

orwarding table capacity of a single switch as the most important

ottleneck. In their architecture, a network controller carefully parti-

ions the multicast address space and assigns the partitions across

witches in datacenters’ multi-rooted tree networks. Local multi-

ast addresses can be aggregated to further increase the number of

roups in each pod. Therefore switches can cooperatively support a

uch larger number of multicast groups across the entire datacenter.

ike [18], this scheme also requires the modification of all network-

ng devices. Our work is similar as this work in terms of that both

roposals depend on the structural properties of multi-rooted tree

opologies, e.g. Fat-Tree. However, our proposal is an overlay solu-

ion, which is easier to be deployed since no modification is required

n networking devices and all upgrades are implemented on end

osts.

The authors of [20] focused on the problem of survivable pro-

isioning for multicast service oriented virtual network requests in

loud-based data centers. The authors proposed an efficient algo-

ithm to map the overlay virtual multicast network provisioning

equest to proper underlay infrastructure, i.e., the virtual machine

lacement problem. In the algorithm, the multicast virtual network is

iewed as a tree-like topology with a source node at the root and des-

inationnodes at the leaves of the tree. Our paper tries to improve the

fficiency of traffic delivery after the virtual network is provisioned,

nd it can work with the algorithm in [20] to deal with two different

spects of multicast virtual networks.

In [21], the authors also use SDN controller to solve the multicast

roblem in cloud networks. They propose to determine elephant and

ice groups according to their traffic amounts and treats them sepa-

ately to reduce the cost of multicast routing calculation. The solution

roposed in [22] uses node-based bloom filter to encode the tree and

esign a provably loop-free Bloom Filter forwarding scheme based

n the feature. It exploits the feature of future data center networks,

hich is close to this paper.
. Preliminaries and problem statement

In the control plane of a cloud network shown as Fig. 1, there are

wo kinds of solutions. One is to deploy a encapsulation mapping dis-

ribution system to distribute and maintain mapping information, so

hat each edge device can retrieve the information of the correspond-

ng underlay node for every overlay destination. OTV and LISP-MS

olve the problem in this way. This is called as “explicit announce-

ent”, since each node should send explicit announcement to the

apping distribution system. The other solution is to depend self-

earning, which is the same as Ethernet LAN. The edge device caches

he mapping information it has learned. When it receives packets

ith unknown destination, it will broadcast to all interfaces. This is

alled “Self Leaning”. Currently, some researchers argue that control

lane solution and data plane solution should be decoupled [23] and

an be proposed independently [24]. For example, NVGRE only gives

ata plane solution, and it states that it can work with any control

lane solutions.

Due to the page limitation, we would not introduce how cloud

etworks deal with unicast packets in details. In the following sub-

ections, we will focus on multicast packets in cloud networks.

.1. Multicast packets in cloud networks

In cloud networks, the multicast packets may be generated be-

ause of the following reasons:

• A VM sends out multicast packets because of the requirement of

applications of cloud users, i.e., the broadcast packets are gener-

ated by overlay applications. We call them “overlay data multi-

cast”. This multicast is limited within the overlay multicast group,

which is defined by the overlay application.

• A VM sends out broadcast packets because of operations of stan-

dard protocols, e.g. ARP. We call them “overlay control broadcast”.

This kind of broadcast is generally limited within an overlay VLAN,

which is defined by cloud users.

• A tunnel endpoint sends out broadcast/multicast packets because

it does not know the mapping information of a destination node.

We call them “tunnel control broadcast”. This kind of broadcast

can be flooded to all edge devices in cloud networks, if no extra

mechanism is deployed. The broadcast can be limited within the

VLAN of the original packet, and VLAN is defined by cloud users.

Please note that one overlay VLAN can be assigned with a mul-

icast group ID, and then overlay VLANs can be viewed the same as

verlay multicast groups. In the following sections, we will not study

ach kind of multicast packets individually, and use “overlay multi-

ast group” to include all of the above scenario requirements.

.2. Current multicast solutions and challenges

Let us first review how cloud networks implement multicast with-

ut underlay IP multicast support currently. The implementation de-

ails might be slightly different in various cloud networks, but the

onceptual model is the same.

Let IPi
o denote the overlay address of a virtual machine vi. Let us

efine the virtual switch which is located at the same physical ma-

hine as vi as its “responsible switch”, since all packets of the virtual

achine have to be transferred by this virtual switch. We denote the

nderlay IP address of this physical machine as IPj. We say that IPj is

he underlay associated address of IPi
o.

Virtual switches, which serve as tunnel endpoints, should know

he mapping (IPi
o, IPj) to encapsulate and deencapsulate unicast data

ackets. When one virtual switch receives a multicast data packet, it

etrieves the multicast destination address, say IPi
om, sends request

o the group management server. Obviously, the overlay multicast

estination should be mapped to a list of underlay IP addresses (IP ,
1
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Fig. 2. Overlay multicast distribution tree.
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IP2, … , IPn), wherein IPi is the underaly associated address of one vir-

tual machine in the multicast group. With the one-to-all model, the

source tunnel endpoint then sends out one copy of the data packet to

each physical machine in the address list.

In OTV, the tasks of group management server are done by Ad-

jacency Server (AS). Although it only maintains one list which in-

cludes all tunnel endpoints, the AS theoretically implements all nec-

essary tasks, such as detection of node join and node leave, mem-

bership maintenance, receiving and responding request from tunnel

endpoints.

The disadvantage of current solution is caused by the one-to-all

model. We know that IP layer multicast exploits a tree structure to

improve its efficiency, while one-to-all model is in fact a star topol-

ogy. Therefore, the source node becomes a bottleneck, because of

replication and heavy utilization of its outgoing links. It also incurs

a lot of unnecessary load on cloud networks, which will be demon-

strated in Section 6.

Therefore, we propose that we must design a more efficient topol-

ogy to distribute multicast packets. Let us take a multicast group with

four destination nodes as an example. In Fig. 2, the left part is using

one-to-all replication model, while the right part shows a two-hop

single-root tree. Although here we only show two distribution trees,

we can find that there are more than ten possible distribution trees

even for this small multicast group with only four destination nodes.

Which one among these dozens of distribution trees is best for the

multicast group and the cloud network? It is not easy to answer di-

rectly, especially when the multicast group is larger. This question

is the key to improve the multicast efficiency of cloud networks. In

Section 5, we will propose several metrics to evaluate the perfor-

mance of a distribution tree and also design a heuristic algorithm to

help cloud networks to construct better distribution trees.

4. Overlay multicast routing framework

In this paper, we study the problem stated in Section 3. Theoreti-

cally, it is constructing an routing overlay based on the physical net-

work. Please note this routing overlay is different from the virtual
Fig. 3. Addressing and architecture o
verlay based on the same physical network. The virtual network is

o provide cloud services for cloud users using virtualization tech-

iques, while the routing overlay is to distributing multicast packets

enerated by the virtual overlay.

The construction of routing overlay is not a new problem in the

nternet. Generally said, the efficiency of overlay routing depends on

ow much it knows about underlay information. For example, P2P

pplication layer routing bring in a lot of problems because it only

nows very limited information of underlay networks. The best way

o learn about underlay networks is to conduct real time measure-

ent about delay, available bandwidth and other information. How-

ver, it will bring in unbearable cost.

.1. Taking advantage of features of fat-tree cloud networks

One hop in overlay network may involves different number of

ops in underlay links. In other words, the distance of VMs are differ-

nt. The key problem is to learn the underlay information as much as

ossible to guide the construction of overlay topology. We propose to

ake advantage of one significant feature of cloud networks. A cloud

etwork is always designed and operated by a same company and can

ave rigid topology structure. In order to reduce the unbearable cost

f measuring underlay information, we then propose the special ad-

ressing organization can help end nodes learn necessary underlay

nformation without conducting measurement.

In this paper, we construct the routing overlay based on Fat-Tree

rchitecture, whose design is shown in Fig. 3 [8]. Note in this Figure,

nly physical machines are shown, while Fig. 1 emphasizes virtual

achines on these physical machines. Our framework can be applied

n any architectures with rigid topology structure. In Fat-Tree cloud

etworks, we can easily infer the “distance” between two physical

achines from their IP addresses. Therefore, the overlay can utilize

his underlay information without measurement. Due to page limita-

ion, we do not introduce Fat-Tree in details and only introduce two

mportant properties.

According to the addressing rule of Fat-Tree, the IP address of one

achine is 10.x.y.z, where x is the index of the pod where the machine

s located, y is the index of the switch in podx, and z is the index of the

ost connecting with switchy in podx.

Assume there are two physical machines, with IP address

0.x1.y1.z1 and 10.x2.y2.z2. If x1 �= x2, two machines are located in

ifferent pods, and their distance is 6, i.e., there are three switches

core switch, aggregate switch, and edge switch) between them. We

all it as “inter-pod” communication. If x1 = x2 and y1 �= y2, two

achines are connecting with different edge switches in a same pod,

nd their distance is 4, i.e., there are two switches between them. We

all it as “inter-switch” communication. If x = x , y = y and z �=
1 2 1 2 1

f FAT-TREE cloud networks [8].
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Fig. 4. Framework: software defined overlay.
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Table 1

Notations.

N The number of destination nodes in the multicast group

Mi The ith node (i ∈ [1, N]), the source node is defined as M0

Rj
i

The jth overlay node on the path from the source to Mi

Li The length of overlay path to Mi

L The depth of the tree, i.e., L = max(Li)

Ri The overlay path to Mi , and Ri = (R1
i
, . . . , RLi

i
)

di The fan-out degree of Mi

RI(i, j) The replication index from Mi to Mj , and RI(i, j) ∈ [1, di]

Dis(i, j) The distance, i.e., the number of underlay hops, from Mi to Mj
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D
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D

D
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2, they are connecting with a same edge switch, and their distance

s 2, i.e., only one edge switch is between them. We call it “local”

ommunication.

Fat-Tree has a very good potential at spreading traffic on multi-

le links. Assume switches of the cloud network is k-port. There are
2/4 possible paths between any two pods, and there are k/2 possible

aths between any two edge switches in a same pod.

.2. Software defined overlay

Our proposed framework is a software defined overlay. As a over-

ay, the cloud network does not require any modification on any

hysical/hardware switches. The overlay nodes are virtual/software

witches in hypervisors of physical servers. They are implemented by

oftware and are easy to enable new functions.

We exploit SDN architecture to implement and control the over-

ay. There should be two central modules: group membership man-

gement module and multicast routing calculation module. The two

odules can be in a same central server and work closely with each

ther. The framework is shown in Fig. 4.

The group membership management module should able to de-

ect events of node join and node leave. It maintains a list of IP ad-

resses of members for each multicast group. When the membership

f a group changes, it notifies the routing calculation module of a up-

ated list, and the routing module calculates a new multicast routing

ree.

The routing calculation module then translates the routing tree

nto flow rules of each overlay node. The flow rules are then sent

own to virtual switches, which will take actions on multicast pack-

ts according to these flow rules. We can see that the routing calcu-

ation module is in fact a SDN controller.

. Construction of multicast overlay distribution tree

In previous sections, we have described our basic idea and frame-

ork to solve the multicast problem in cloud networks. In this sec-

ion, we would focus on the algorithm to construct the multicast over-

ay distribution tree.

.1. Notations

For clear expression, we list some notations in Table 1. Based on

hese notations, we define metrics to measure the performance of a

outing tree.

.2. Local performance: delay

We use delay to each destination node to measure the user experi-

nce. The delay may be caused by two reasons: transmission delay and

eplication delay. In order to avoid measurement overhead, we sim-

ly assume each underlay (physical) link is with a transmission delay

t, thus the delay between two overlay nodes is linear with their dis-

ance, assuming there is no replication needed. Let us assume that the
elay incurred by one replication action is dr. So the delay to transmit

packet from the source node to a destination node Mi is

i =
Li−1∑
j=0

(
RI(Rj

i
, Rj+1

i
) × dr + Dis

(
Rj

i
, Rj+1

i

)
× dt

)
(1)

Let us define Dr
i

and Dt
i

as follows:

r
i =

L−1∑
j=0

RI
(
Rj

i
, Rj+1

i

)
nd

t
i =

L−1∑
j=0

Dis(Rj
i
, Rj+1

i
) (2)

Then we can rewrite the Eq. (1) as follows:

i = Dr
i × dr + Dt

i × dt (3)

We can see that Dr
i

is the number of replication actions during the

hole period of transmitting a packet from the source node to

he destination node, and Dt
i

is the total number of underlay links

n the overlay path.

Replication actions consume CPU and networking resource of the

ode. It is reasonable to assume that cloud operators would like to

e fair to all nodes and set a maximum replication degree d, i.e., di

d for all i ∈ [0, N]. Then the minimum overlay path length can be

alculated as

in(L) = �logd(N(d − 1) + d) − 1�. (4)

It shows there is a tradeoff between d and L. The theoretic maxi-

um upper bound of Dr
i

is d∗L. A simple numerical study can reveal

hat even when the group size is 230, the best d is 3, if we only want

o minimize the longest replication delay.

In terms of minimizing transmission delay, according to the

q. (2), we should try to minimize L as well as Dis(R
j
i
, R

j+1
i

).

In summary, we should keep these guidelines in mind:

Guidelines: In order to minimize the maximum delay for nodes in

he group to receive the packet, we should

1. Give a fixed d, we should minimize the depth of the routing tree, and

the minimum depth can be calculated as Eq. (4).

2. Increasing d can help reduce maximum transmission delay, but it

may not be helpful for minimizing maximum replication delay.

3. Local communications have a higher priority than inter-switch com-

munications which are preferred to inter-pod communications. If not

necessary, inter-pod overlay path should not be used.

.3. Networking load and load distribution

Cloud operators also would like to use its networking resource

ore efficiently. We define three global metrics to evaluate the uti-

ization efficiency of a multicast tree.

The first metric is networking load, i.e., the amount of traffic load

ncurred on the cloud network to transmit a multicast packet to all
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destinations in the multicast group. We assume transmitting one

packet on one underlay link consumes one unit of networking load.

Then, the networking load is equal to the total number of underlay

links the packet traverses to reach all destinations. Therefore, we have

T =
N∑

i=1

Dis
(
RLi−1

i
, RLi

i

)
. (5)

Cloud operators would also like to see that the traffic load T is dis-

tributed evenly on more links. For example, it is obviously better that

the traffic from podi to podj is distributed evenly on all usable k2/4

paths, instead of on a single path. In this paper, we bring in the con-

cept of information entropy to evaluate the degree of load balancing.

The entropy is defined as

E =
G∑

i=1

Ti∑
G Ti

log2

∑
G Ti

Ti

, (6)

wherein G is the number of underlay links whose load is larger than

zero, and Ti is the traffic load on the ith link. A larger E means that traf-

fic flows are distributed on more links, or more evenly although the

number of links does not increase. Cloud operators prefer a larger E.

In Fat-Tree cloud networks, underlay links can be classified into

six groups: from machines to edge switches (local uplinks), from

edge switches to aggregate switches (switch uplinks), from aggre-

gate switches to core switches (pod uplinks), and corresponding lo-

cal (switch/pod) downlinks. Links in a same category might be in-

terchangeable, while links in different categories cannot be inter-

changed using traffic engineering techniques. Therefore, in this paper

we also study the entropy of each category, as well as all links in total.

The third metric is multicast capacity, which is the maximum traf-

fic rate from the source node to all destinations this cloud network

can support. Mathematically, it is

= min
G

Ci

Ti

(7)

5.4. Constrained overlay multicast strategy

The operator of one cloud network can set the maximum fan-out

degree d according to the performance of physical machines in the

cloud network. If the physical machine can replicate and send out

packets very quickly, operators do not worry about replication delay

and d can be set to a larger value to reduce transmission delay.

Our goal is to construct a multicast tree under the constraint of

d. We call the problem constrained overlay multicast tree construction

algorithm.

Since there are several metrics involved, and the possible solution

space is very large, it is difficult to formulate the routing construc-

tion as an optimization problem and solve the problem symbolically.

Therefore, in this paper, we will propose a greedy heuristic algorithm

and then evaluate the algorithm by simulations. The heuristics we

proposed are as follows:

1. Minimize the depth of the multicast tree.

Given a value of d, the minimum depth of a tree is determined by

Eq. (4). In most cases, a shorter overlay path tends to have a smaller

delay than a longer overlay path, so each node would like to be added

to the routing tree as early as possible. We are also aware that it is not

absolutely true, since a overlay hop may involve different number of

underlay hops. The heuristics will be evaluated by simulations.

2. If not necessary, a node will not send packet to nodes in other pods or

other switches.

This is based on the Guideline 2, because inter-pod communica-

tions would incur a longer delay and more traffic load than local com-

munications. But how to determine whether it is necessary to use
nter-pod or inter-switch communications? The third heuristic an-

wers this question.

3. Inter-pod or inter-switch communications would be used, if the depth

of the multicast tree would be larger with only local communications.

In order to understand this heuristic, let us first see an extreme

ase. Initially, all pods, except the one which the source node is

ocated in, do not have any node that received the packet. There-

ore, inter-pod and inter-switch communications are necessary. Oth-

rwise, they will never receive the packet.

Now let us consider the following scenario. After one or more

nter-pod and inter-switch communications, some nodes in a pod

ave received the packet. Let us consider a pod r. Assume that the

umber of nodes in this pod is nr. These nodes can be at three status:

• Done nodes: the node has been in the multicast tree and has used

up its replication degree, i.e., has had parent and children in the

tree. Let us define this status as done and the number of this kind

of node is nd
r .

• Sending nodes: the node has been in the multicast tree and is find-

ing proper child nodes. Let us define this status as sending and the

number of these nodes is ns
r .

• Waiting nodes: the node has not been added to the multicast tree,

i.e., it does not have any parent node and is waiting for other nodes

to select it as a child node. Let us define this status as waiting, and

the number is nw
r .

Obviously we have nr = nd
r + ns

r + nw
r .

We have known that the minimum depth of the tree is L according

o Eq. (4). Let Lj denote the level of a done node or a sending node Mj

n the tree. And the root of the tree, i.e., the source node is at level 0.

Under the condition that the depth of the multicast tree should

ot exceed L, the maximum number of nodes that a sending node Mj

an cover in its subtree is

dl−l j+1 − 1

d − 1
− 1.

Therefore, the number of destination nodes who can receive the

acket from ns
r sending nodes without any inter-pod communication

s

c
r =

ns
r∑

j=1

(
dl−l j+1 − 1

d − 1
− 1

)
. (8)

If nw
r > nc

r , it means this pod needs help from other pods. Other-

ise, it means local sending nodes have been able to cover all waiting

odes in the pod, and this pod may help other pods. We still need to

now how many child nodes can be selected from other pods by these

ending nodes.

Our greedy algorithm is a bread-first search algorithm. So we can

ssume at the moment that sending nodes are finding child nodes,

hese sending nodes are located at a same level lr. Their child nodes

re at the level lr + 1. The number of nodes one child node can cover

s

dl−lr − 1

d − 1
− 1.

Therefore, to make sure that at the next level this pod still does not

eed help from other pods, at least the sending nodes should select
l
r child nodes from the local pod, and nl

r is

l
r =

⌈
nw

r

dl−lr −1
d−1

− 1

⌉
. (9)

So at most the ns
r sending nodes can select ne

r child nodes from

ther pods if other pods need help, and we have ne
r = ns

r × d − nl
r .

lease note if other pods do not need help, the sending node will
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elect child nodes locally, i.e., local preference. If all local nodes have

een added to the tree, the sending node just gives up selecting more

hild nodes, i.e., no inter-pod if not necessary, which means its fan-

ut degree is less than d.

Now we need to determine which pod should be selected first if

nter-pod communications are necessary.

4. When more than one pods need incoming links, the pod who needs

most incoming links are selected first.

If ne
r < 0, it means the pod r needs help from other pods, and it

eeds −ne
r incoming links. When one pod finds it can help other pods,

t will select to help the pod with the largest −ne
r .

In the above heuristics, we mainly consider inter-pod communi-

ations. Inter-switch communications should be dealt similarly.

Based on these heuristics, we design an algorithm to construct the

onstrained overlay multicast tree.

onstrained multicast tree construction algorithm:

he SDN controller (routing calculation module) executes

his algorithm to construct a multicast routing tree.

. initialize the source node as a sending node at level 0,

and other nodes as waiting nodes;

. lc = 0;

. termination_flag = FALSE;

. while (termination_flag == FALSE){

. calculate ns and nw of the cloud network;

. calculate the expected level l using ns and nw;

. calculate ns
r , nw

r , nl
r , and ne

r for all r;

. for each sending node m at level lc {

. let i be its pod index and j be its switch index;

0. if ne
j
<= 0, dl = d;

1. if ne
j
> 0, dl = �nl

j
/ns

j
�;

2. let d j be the number of waiting nodes in j;

3. m selects min(dl , d j) random nodes in j as children;

4. update related variables;

5. de = d − min(dl , d j);

6. if ne
i

<= 0 {

7. while de > 0 {

8. let j̄ = argmaxr(−ne
r ) for all switches in pod i;

9. m selects a random node in pod i switch j̄;

0. update related variables;

1. de = de − 1;

2. }

3. }

4. else {

5. let ī = argmaxr(−ne
r ) for all pods;

6. while de > 0 and ne
ī

< 0 {

7. let j̄ = argmaxr(−ne
r ) for all switches in pod ī;

8. m selects a random node in pod ī switch j̄;

9. update related variables;

0. de = de − 1;

1. let ī = argmaxr(−ne
r ) for all pods;

2. }

3. }

4. update related variables;

5. }

6. lc = lc + 1;

7. if there is no waiting nodes

8. termination_flag = TRUE;

9. }

In the algorithm, steps from 10 to 14 are selecting local child

odes; steps from 16 to 23 are selecting children from nodes that are
onnecting with different edge switches in the same pod; while steps

5 to 32 are selecting children from nodes in other pods.

. Performance evaluation

In this section, we would conduct simulations to evaluate the

erformance of the algorithm proposed in this paper. The perfor-

ance of a multicast group might be affected by the distribution

f destination nodes in the cloud network. For example, a multicast

roup with all nodes in one pod may have different performance

rom a multicast group whose nodes are distributed evenly in all

ods.

Therefore, in this section, we first propose a simple model to gen-

rate different multicast groups. Then, based on this model and per-

ormance metrics defined in Section 5, we compare our algorithm

ith current one-to-all replication model. We also evaluate the scal-

bility property of our algorithm from various perspectives.

.1. Multicast group generation model

One cloud application prefer to use nodes in one pod instead of

odes in different pods, because nodes in pod can communication

ith each other with short delay. Therefore, it is reasonable to assume

hat the distribution of nodes of a group in pods of a cloud network

beys Zipf’s law, which is a discrete power law probability distribu-

ion. Mathematically, we have

pi = 1

is
∑k

n=1 n−s
i ∈ [1, k]; (10)

herein pi is the probability that a node is in pod i, s is the parameter

f Zipf distribution which controls the extent of heavy-tail. Note that

is a parameter of the cloud network, and it is in fact the number of

ods.

However, in one cloud network, the maximum number of nodes in

ne pod is k2/4. It is possible that N × pi exceeds the threshold. In case

hat all nodes in pod i have been destination nodes of the multicast

roup, we will run the Zipf distribution algorithm again and again,

ntil a usable pod is found.

We assume that nodes are distributed evenly in one pod, i.e., the

xpected number of nodes connecting with different switches in one

od is equal. The algorithm to generate a multicast group is described

s follows.

lgorithm to generate a multicast group:

e run this algorithm to generate different multicast groups

ith N nodes for simulations

. for x = 1 : N {

. run Zipf distribution to find a pod i;

. while (pod i has no free node) {

. run Zipf distribution to find a pod i;

. }

. set node x to be in pod i;

. run uniform distribution to find a switch j;

. while ( (i, j) has no free node) {

. j = ( j mod k) + 1;

0. }

1. set node x to be in pod i switch j;

2. }

Fig. 5 shows several multicast groups generated with different pa-

ameters. Roughly speaking, the left graph illustrates dense groups,

here a lot of nodes in the cloud take part in the multicast group;

hile the right part illustrates sparse groups. s = 0 produces groups
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Fig. 5. Examples of multicast group with different parameters.
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whose nodes are distributed evenly. As s increases, the tail becomes

longer and longer. Note that the line with circle markers in the left

subgraph is roughly linear when x <= 5. It is because all nodes in the

top five pods have been in the multicast group as s becomes larger.

6.2. One-to-all replication and constrained multicast tree

We consider a cloud network with k = 16, so it at most can have

k3/4 = 1024 nodes. In this cloud network, we generate multicast

groups with different sizes (N from 80 to 660) and different s (s = 0 or

s = 1.5). Then we run one-to-all algorithm and our algorithm (d = 3)

for each multicast group and compare their performance.

1. Delay

Since the values of dr and dt are determined by the performance

parameters of cloud networks, we cannot compare them directly.

Therefore, here we would study the transmission delay and replica-

tion delay separately. With one-to-all routing algorithm, we can eas-

ily have

max Dr
i = N max Dt

i
= 6.
Fig. 6 shows the running result of the constrained overlay mul-

icast routing algorithm. Here we do not present the average delay,

hich shows a same property with the maximum delay.

Therefore, we have the following observations:

Observation 1: With the one-to-all routing, the maximum replica-

ion delay increases linearly with group size; while with the constrained

ulticast routing, the maximum replication delay does not change a lot

s the group size increases.

Observation 2: With the one-to-all routing, the maximum transmis-

ion delay does not change with group size; while with the constrained

ulticast routing, the maximum transmission delay is also relatively sta-

le, although it is a little longer than one-to-all algorithm.

2. Average networking load incurred by one node

When the multicast group has more and more nodes, it is natural

hat the networking load may increase. Therefore, we plot T/N instead

f T in Fig. 7.

Observation 3: With the one-to-all routing, when the multicast

roup becomes larger, the average networking load incurred by one node

lso increases slowly; while with the constrained multicast routing, the

verage networking load incurred by one node decreases, which shows a

ood property of scalability.



J.H. Wang et al. / Computer Communications 70 (2015) 1–14 9

80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
2.5

3

3.5

4

4.5

5

5.5

6

 Group Size N

 A
v

e
ra

g
e

 L
o

a
d

k = 16, d=3

s = 0, Constrained

s = 1.5, Constrained

s = 0, One−to−All

s = 1,5, One−to−All

Fig. 7. T
N

as N increases.

s

r

fi

k

f

h

i

0

a

n

p

w

t

d

t

l

c

F

t

c

a

3. Entropy of up-links and down-links

We study the load distribution problem under a favourable as-

umption, i.e., each switch in the cloud network is using simple round

obin multi-path packet forwarding. In other words, we assume traf-

c flows between two pods would be splitted evenly on all possible
2/4 pod uplinks and pod downlinks, and we use similar assumptions

or other links. After we calculate traffic load on each link, we can

ave the entropy of each category of links from Eq. (6), and plot them

n Figs. 8 and 9.

With the one-to-all routing, the entropy of local uplinks is always

, because only the source node incurs traffic load on local uplinks,

nd all these traffic flows must use the outgoing link of the source

ode. Similarly, only k/2 switch uplinks can be used and only k2/4
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od links can be used. Therefore, the entropy of switch uplinks is al-

ays 3, and the entropy of pod uplinks 6. The entropies of these link

ypes are much larger with the constrained multicast routing, which

emonstrates a good property of load balancing.

Now let us look at pod and switch downlinks. Although

he entropies under the constrained multicast routing is still

arger than one-to-all routing, the differences between them be-

ome smaller. It is because of the good multi-path capability of

at-Tree.

There is no difference on the entropy of local downlinks between

wo routing algorithms. This is because that the traffic load on lo-

al downlinks is determined by the distribution of destination nodes,

nd routing algorithms cannot help.

We summarize our observation as follows.
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Observation 4: The constrained multicast routing can spread traffic

load on multiple links to avoid bottlenecks much better than the one-to-

all routing, especially on uplinks.

4. Multicast capacity

Fig. 10 shows the maximum traffic rate of multicast packets that

the cloud network can support, assuming all links in the cloud net-

work are with a capacity of 1.

Note that s does not affect C, so in the figure we can see only two

lines.

Observation 5: With the one-to-all routing, when the multicast

group becomes larger, the multicast capacity decreases; while with the

constrained multicast routing, the multicast capacity does not change,

which shows a good property of scalability.
.3. Influences of parameters on constrained multicast routing

In the above subsection, we focus on the comparison of our con-

trained overlay multicast routing with current one-to-all routing al-

orithm. We can also see that the performance of our routing algo-

ithm does not degrade a lot, even improve in terms of some metrics,

s the multicast group becomes larger. It demonstrates that the con-

trained multicast routing algorithm is scalable with multicast group

ize N.

In this subsection, we conduct a further study on the performance

f our algorithm as other parameters change.

1. Replication degree d

Figs. 11–13 plot the multicast performance when cloud operators

et different replication degree d.
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Although the average transmission delay keeps decreasing as d in-

reases, almost all other metrics become worse. The average repli-

ation delay becomes longer after d > 4, the entropy of uplinks

ay decrease slightly, and the average networking load caused by

ne node may increase. Most importantly, the multicast capacity

eeps decreasing. If the replication degree is too large, a node that
eplicates multicast packets will incur lots of traffic on its outgoing

ink to the edge switch and the link become a bottleneck.

Observation 6: One cloud operator should set d according to per-

ormance parameters of the cloud network, e.g. transmission cost and

eplication cost. d should not be too large, and the recommended value

s from 2 to 6.
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Figs. 14 –16 plot the performance for multicast groups with differ-

ent nodes distribution.

In terms of the transmission delay and the average load incurred

by one node, the multicast performance slightly improves when the
istribution of multicast destinations are more heavy-tailed, i.e., s

ncreases. But the entropy of down links decrease, which reflects a

orse load balance on these links. s does not have an obvious influ-

nce on other metrics.

Observation 7: Roughly speaking, the performance of the con-

trained multicast routing is stable for multicast groups with different
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istributions of multicast destinations. When the distribution is more

eavy-tailed, its transmission delay and average networking load slightly

mprove, but its load balance slightly degrades.

3. Cloud size parameter k

Figs. 17 –19 plot the performance of our constrained multicast

outing algorithm as k increases. Here we define the density of
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We can see that both average transmission delay and average

eplication delay increase with k. It is intuitively true since the

roup has much more nodes. Fortunately, we can see the increase

ate is very slow, considering the exponentially increasing group
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[

[

As k increases, the traffic flows on both uplinks and downlinks are

more balanced, and the average load incurred by one node decreases.

Both are good for the cloud network.

Observation 8: As the cloud network extends, the constrained mul-

ticast routing algorithm works better in terms of load balance and the

average load of one node. The delay increases, but its increase rate is

much slower than the increase of group size.

6.4. Summary of simulation results

We summarize all observations from our simulations as follows.

First, comparing to the one-to-all routing, our constrained multi-

cast routing shows a better performance in terms of all four metrics

defined in Section 5, i.e., delay, networking load per node, traffic bal-

ance and multicast capacity.

Second, our constrained multicast routing shows a good property

of scalability, as the multicast group size N increases or the cloud net-

work size k extends.

Third, the performance of the constrained multicast routing is rel-

atively stable for multicast groups with different distributions of mul-

ticast destinations.

Forth, the replication degree d (set by cloud operators) really af-

fects the multicast performance. d should not be too large, and the

recommended value is from 2 to 6.

7. Conclusion

In this paper, we solve the multicast problem as an overlay rout-

ing problem and take advantage of the special architecture of cloud

networks to avoid unbearable costs to learn underlay information.

Our solution is based on SDN framework which implements and con-

trols the overlay. The SDN controller runs our algorithm to construct a

degree-constrained overlay multicast routing tree. Then it translates

the routing tree into flow rules of each overlay node. The flow rules

are then sent down to virtual switches, which will take actions on

multicast packets according to these flow rules.

Obviously, the algorithm to construct multicast trees has a signif-

icant influence on the performance of our solution. Our simulations

show that its performance is better than current solution which

relies on one-to-all replications. More importantly, it can deal with

various multicast groups and it scales well with both group size and

cloud size.
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